Russian Journal of Coordination Chemistry

, Volume 44, Issue 4, pp 301–315 | Cite as

Porphyrazine Structures with Electron-Withdrawing Substituents as the Base for Materials for Photonics and Biomedicine

  • S. A. Lermontova
  • I. S. Grigor’ev
  • E. Yu. Ladilina
  • I. V. Balalaeva
  • N. Yu. Shilyagina
  • L. G. Klapshina


A survey of the studies dealing with the development of new porphyrazine type tetrapyrrole dyes promising for the application in photonics and biophotonics is presented. An original synthetic approach to the template assembly of the porphyrazine macrocycle at room temperature in high yield has been proposed. A porphyrazine macrocycle containing eight nitrile groups at the periphery has been prepared for the first time. The replacement of four nitrile groups in the macrocycle by aryl groups has been found to generate a unique porphyrazine structure demonstrating a fluorescent molecular rotor behavior, i.e., a strong dependence of fluorescence parameters (quantum yields and lifetimes) on the viscosity of the medium. Some aspects of possible applications of the obtained compounds in biophotonics are described. Good prospects for the use of these compounds as efficient agents for tumor diagnosis, sensitizers for photodynamic therapy, and probes for intracellular viscosity are outlined.


porphyrazines template synthesis ytterbium complexes optical teranostic agents photosensitizers optical probes for intracellular viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borec, C., Hanson, K., Djirovich, P.I., et al., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 1109.CrossRefGoogle Scholar
  2. 2.
    Currie, M.J., Mapel, J.K., Heidel, T.D., et al., Science, 2008, vol. 321, p. 226.CrossRefGoogle Scholar
  3. 3.
    Gel’fond, M.L., Prakticheskaya Onkologiya, 2007, vol. 8, p. 204.Google Scholar
  4. 4.
    Klapshina, L.G., Grigoryev, I.S., Douglas, W.E., et al., Chem. Commun., 2007, no. 19, p. 1942.CrossRefGoogle Scholar
  5. 5.
    Klapshina, L.G., Douglas, W.E., Grigoryev, I.S., et al., J. Mater. Chem., 2009, vol. 19, p. 3668.CrossRefGoogle Scholar
  6. 6.
    Michel, S.L.J., Hoffman, B.M., Baum, S.M., and Barrett, A.G.M., Carlin, K.D., Ed., New York: Wiley, 2001, p. 473.Google Scholar
  7. 7.
    Trivedi, E.R., Harney, A.S., Olive, M.E., et al., PNAS, 2010, vol. 107, p. 2084.Google Scholar
  8. 8.
    Ghosh, A., Gassman, P.G., and Almlöf, J., J. Am. Chem. Soc., 1994, vol. 116, p. 1932.CrossRefGoogle Scholar
  9. 9.
    Manriquez, J.M., Yee, G.T., McLean, R.S., et al., Science, 1991, vol. 252, p. 1415.CrossRefGoogle Scholar
  10. 10.
    Grigor’ev, I.S., Lermontova, S.A., Klapshina, L.G., et al., Dokl. Ross. Akad. Nauk., 2012, vol. 447, no. 4, p. 410.Google Scholar
  11. 11.
    Kobayashi, N., Nakajima, S., and Osa, T., Chem. Lett., 1992, vol. 21, p. 2415.CrossRefGoogle Scholar
  12. 12.
    Ozette, K., Leduc, P., Palacio, M., et al., J. Am. Chem. Soc., 1997, vol. 119, p. 6442.CrossRefGoogle Scholar
  13. 13.
    D’Andrade, B.W., Datta, S., Forrest, S.R., et al., Organic Electronics, 2005, vol. 6, p. 11.CrossRefGoogle Scholar
  14. 14.
    Kianfar, A.H. and Mohebbi, S., J. Iran. Chem. Soc., 2007, vol. 4, p. 215.CrossRefGoogle Scholar
  15. 15.
    Günes, S.H., Neugebauer, H., and Sariciftci, N.S., Chem. Rev., 2007, vol. 107, p. 1324.CrossRefGoogle Scholar
  16. 16.
    Harvey, M.D., Pace, J.T., and Yee, G.T., Polyhedron, 2007, vol. 26, p. 2037.CrossRefGoogle Scholar
  17. 17.
    Lermontova, C.A., Grigor’ev, I.S., Shilyagina, M.Yu., et al., Russ. J. Gen. Chem., 2016, vol. 86, no. 6, p. 1330.CrossRefGoogle Scholar
  18. 18.
    Lermontova, S.A., Grigor’ev, I.S., Peskova, N.N., et al., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 479.CrossRefGoogle Scholar
  19. 19.
    Haidekker, M.A. and Theodorakis, E.A., J. Biol. Eng., 2010, vol. 4, p. 1.CrossRefGoogle Scholar
  20. 20.
    Forster, V. and Hoffmann, G., J. Phys. Chem., 1971, vol. 75, p. 63.Google Scholar
  21. 21.
    Izquierdo, M.A., Vysniauskas, A., Lermontova, S.A., et al., J. Mater. Chem., vol. 3, no. 2015, p. 1089.CrossRefGoogle Scholar
  22. 22.
    Kuimova, M.K., Chimia, 2012, vol. 66, p. 159.CrossRefGoogle Scholar
  23. 23.
    Shimolina, L.E., Izquierdo, M.A., López-Duarte, I., et al., Sci. Rep., 2017, vol. 7, article number: 41097.Google Scholar
  24. 24.
    Kuimova, M.K., Botchway, S.W., Parker, A.W., et al., Nature Chemistry, 2009, vol. 1, p. 69.CrossRefGoogle Scholar
  25. 25.
    Grigor’ev, I.S., Klapshina, L.G., Lermonotova, S.A., et al., Rossiiskie Nanotekhnologii, 2012, vol. 7, nos. 9-10, p. 53.Google Scholar
  26. 26.
    Klapshina, L.G., Douglas, W.E., Grigoryev, I.S., et al., Chem. Commun., 2010, vol. 46, p. 8398.CrossRefGoogle Scholar
  27. 27.
    Klapshina, L.G., Kuimova, M.K., Balalaeva, I.V., et al., Proceedings of IVInternational Symposium “Topical Problems of Biophotonics—2013,” Nizhny Novgorod, 2013, p. 160.Google Scholar
  28. 28.
    Kopranenkov, V.N. and Luk’yanets, E.A., Izv. Akad. Nauk, Ser. Khim., 1995, no. 12, p. 2320.Google Scholar
  29. 29.
    Yuzhakova, D.V., Lermontova, S.A., Grigoryev, I.S., et al., BBA General Subjects, 2017, vol. 1861, p. 3120.CrossRefGoogle Scholar
  30. 30.
    Shilyagina, N.Y., Peskova, N.N., Lermontova, S.A., et al., J. Biophotonics, 2017, vol. 10, p. 1189.CrossRefGoogle Scholar
  31. 31.
    Klapshina, L.G., Lermontova, S.A., Grigoryev, I.S., et al., Proceedings of VIInternational Symposium “Topical Problems of Biophotonics—2017.” St.-Petersburg–Nizhny Novgorod, 2017, p. 88.Google Scholar
  32. 32.
    Klapshina, L.G., Lermontova, S.A., Peskova, N.N., et al., RF Patent 2621710.Google Scholar
  33. 33.
    Yakimansky, A.V., Meleshko, T.K., Ilgach, D.M., et al., J. Polym. Sci., Part A, 2013, vol. 51, p. 4267.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Lermontova
    • 1
    • 2
  • I. S. Grigor’ev
    • 2
  • E. Yu. Ladilina
    • 2
  • I. V. Balalaeva
    • 1
  • N. Yu. Shilyagina
    • 1
  • L. G. Klapshina
    • 1
    • 2
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations