Deep Electrical Conductivity of the Archaean Blocks of Kola Peninsula in the Light of the Results of Murman-2018 Experiment: A Review

Abstract—In this paper, we review the results of the deep electromagnetic soundings carried out on the Archaean blocks of the Kola Peninsula over the past 40–50 years, describe the main results of the Murman-2018 experiment, and present a critical analysis of the previous studies considering the new data. The first part of the paper addresses the results of the studies with the extremely low frequency (ELF) transmitter “Zevs” and a 40 MW MHD source “Khibiny,” the frequency soundings with a 29 kW ERS-67 car generator, and the DC resistivity soundings with vertical electrical sounding (VES) and magnetotelluric (MT) sounding setups. The review focuses on the controversial issues of the previous results for their subsequent critical analysis based on the data from the Murman-2018 experiment. The second part of the paper describes the technique, procedure, and results of the Murman-2018 experiment. The experiment included distance DC resistivity soundings (DS), controlled-source frequency soundings (Control Source AudioMagnetoTellurics, CSAMT), and audio magnetotelluric soundings (AMT) using natural variations of the Earth’s electromagnetic field. The DS and CSAMT soundings were carried out with axial and equatorial setup configurations using two mutually orthogonal current lines AB1 and AB2 with the lengths of 1.9 and 1.6 km, respectively. The key novelty of the DS measurements was the use of a linear step in changing the distance OO' between the source and receiver (2.5 and 5 km) in the range of spacings from 2.5 to 56 km. The linear step pf change of the OO' distance was used for detecting and correcting the effects of lateral and static distortions in the observation results. The DS measurements were performed along three rays directed towards West, North, and East relative to the current lines AB1 and AB2. The CSAMT measurements were performed at a distance up to 105 km from the source in combination with AMTS. Based on the results of the Murman-2018 experiment, a three-layer model of crustal structure with resistivity increasing in a gradient–stepwise manner down to a depth of 20–30 km was constructed. The resistivity in the upper layer gradually (in a gradient-wise manner) increases with depth from 103 Ω m on the ground to 104 Ω m at a depth of 1–2 km. The middle layer has a constant resistivity on the order of (1–2) × 104 Ω m in the depth interval from 1–2 to 10 km and is identified as a “compaction” zone. It is detected at spacings from 2–3 to 30–40 km. In this spacing interval, apparent resistivity on the ground sharply varies ​​from 5 × 103 to 5 × 104 Ω m against the average background 2 × 104 Ω m. The sharp swings are interpreted as the profiling effect and attributed to the influence of the fractured zones and faults intersected by the sounding path. According to the geological estimates, the faults are steeply dipping near the surface and gently dipping at depth. Their overall influence “stabilizes” “flattens” the resistivity of the middle layer at a level of 2 × 104 Ω m and leads to the formation of effect of intermediate conductive layer having a dilatancy-diffusion origin (DD-layer) in the depth interval from 3–5 to 7–10 km (at the base of the second layer) with a longitudinal conductivity on the order of 1 S m and resistivity within 5 × 103 to 104 Ω m. The third (bottom) layer manifests itself by a sharp stepwise increase in electrical resistivity up to 105–106 Ω m and higher. The top surface of this layer is located at a depth of 10–15 km and is conditionally interpreted as an “impenetrability boundary” for direct current. This boundary marks the Brittle–Ductile Transition Zone (BDT) of the rocks. A critical analysis of the previous results in the light of the new data obtained in the Murman-2018 experiment is conducted in the Discussion section.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.


  1. 1

    Anderson, W.L., Numerical integration of related Hankel transformation of orders 0 and 1 by adaptive digital filtering, Geophysics, 1979, vol. 44, pp. 1287–1305.

    Article  Google Scholar 

  2. 2

    Askerov, E.N., Bagdankis, N.I., Bagdasarova, N.Yu., Bori-soglebskii, V.S., Bukreev, V.S., Zhukaev, Yu.V., Lisin, A.S., Koval’chuk, N.V., Kolesnik, V.E., Knyazev, V.N., Korenevskii, L.N., Odintsov, V.I., Perunov, B.S., and Useinov, S.Z., Digital automatic measuring station TSAIS, in Geofizicheskaya apparatura, vyp. 91 (Geophysical Instruments, vol. 91), Leningrad: Nedra, Leningr. Otd., 1989, pp. 3–12.

  3. 3

    Barannik, M.B., The technique of Murman-2018 experiment, Nauka Tekhnol. Razrab. (Thematic Issue “Methodological Developments for Electromagnetic Soundings with Controlled Sources”), 2019, vol. 98, no. 4, pp. 50–56.

  4. 4

    Barannik, M.B., Danilin, A.N., Efimov, B.V., Kolobov, V.V., Prokopchuk, P.I., Selivanov V.N., Shevtsov, A.N., Kopytenko Yu.A., and Zhamaletdinov, A.A., High-voltage power inverter of the generator “Energy-2” for electromagnetic soundings and monitoring of the earthquake source zones, Seism. Instrum., 2010, vol. 46, no. 1, pp. 49–61.

    Article  Google Scholar 

  5. 5

    Batieva, I.D., Bel’kov, I.V., Vetrin, V.R., Vinogradov, A.N., Vinogradova, G.V., and Dubrovskii, M.I., Granitoidnye formatsii dokembriya severo-vostochnoi chasti Baltiiskogo shchita (Precambrian Granitoid Formations of the Northeastern Baltic Shield), Leningrad: Nauka, 1978.

  6. 6

    Berdichevsky, M.N. and Dmitriev, V.I., Magnitotelluricheskie zondirovaniya gorizontal’no-odnorodnykh sred (Magnetotelluric Sounding of Horizontally Homogeneous Media), Moscow: Nedra, 1992.

  7. 7

    Bernstein, S.L., Burrows, M.L., Evans, J.E., Griffiths, A.S., McNeill, D.A., Niessen, C.W., Richer, I., White, D.P., and Willim, D.K., Long-range communication at extremely low frequencies, Proc. IEEE, 1974, vol. 62, no. 3, pp. 292–312.

    Article  Google Scholar 

  8. 8

    Blohm, E.K., Worzyk, P., and Scriba, H., Geoelectrical deep soundings in Southern Africa using the Cabora Bassa power line, J. Geophys., 1977, vol. 43, no. 1, pp. 665–679.

    Google Scholar 

  9. 9

    Bobrovnikov, L.Z., Radiotekhnika i elektronika (Radio Engineering and Electronics), Moscow: Nedra, 1974.

  10. 10

    Davidenko, I.V. and Goryainov, P.M., Tectonic-caisson effect in rock massifs and ore deposits is an important phenomenon of geodynamics, Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 5, pp. 1212–1215.

    Google Scholar 

  11. 11

    Dual-use ZEUS ELF radio transmitting unit in popular science publications, reports and memoirs of participants, Ch. 5 in Vzaimodeistvie elektromagnitnykh polei kontroliruemykh istochnikov SNCh diapazona s ionosferoi i zemnoi koroi, tom 1: Mater. 1-go Vseross. nauchno-prakt. semin. mezhdunar. uchastiem, (Interaction of Electromagnetic Fields of Controlled ELF Sources with the Ionosphere and the Earth’s Crust, vol. 1: Proc. 1st All-Russ. Sci. Tech. Workshop with Int. Participation), Velikhov, E.P., Voitekhovskii, Yu.L., and Zhamaletdinov, A.A., Eds., Apatity: GI KNTs RAN, 2015, pp. 165–195.

  12. 12

    D’yakonov, B.P. and Ulitin, R.V., Earth’s tides and variations in the physical characteristics of rocks, Dokl. Akad. Nauk SSSR, 1982, vol. 264, no. 2, pp. 322–325.

    Google Scholar 

  13. 13

    Engelberg, S., Random Signals and Noise: A Mathematical Introduction, Boca Raton: CRC Press, 2007.

    Google Scholar 

  14. 14

    Gasanenko, L.B., Normal’noe pole vertikal’nogo garmonicheskogo nizkochastotnogo magnitnogo dipolya (Normal Field of Vertical Harmonic Low-Frequency Magnetic Dipole), Uch. Zap. Leningr. Gos. Univ., 1958, vol. 249, no. 10, pp. 15–36.

    Google Scholar 

  15. 15

    Geologicheskaya karta Kol’skogo regiona. Masshtab 1 : 500000 (Scale 1 : 500000 Geological Map of the Kola Region), Mitrofanov, F.P., Ed., Apatity: GI KNTs RAN, 1996.

  16. 16

    Glaznev, V.N., Kompleksnye geofizicheskie modeli litosfery Fennoskandii (Complex Geophysical Models of the Lithosphere of Fennoscandia), Apatity: KaeM, 2003.

  17. 17

    Goryainov, P.M. Nelineinaya tektonika (Nonlinear Tectonics), Apatity: KNTs RAN, 1995.

  18. 18

    Jones, A., Imaging and observing the electrical Moho, Tectonophysics, 2013, vol. 609, pp. 423–436.

    Article  Google Scholar 

  19. 19

    Keller, G.V., Anderson, L.G., and Pritchard, Y.I., Geological survey investigation of the crust and upper mantle, Geophysics, 1966, no. 6, pp. 1078–1087.

  20. 20

    Kolobov, V.V., Barannik, M.B., Efimov B.V., Zhamaletdi-nov, A.A., Shevtsov, A.N., and Kopytenko, Yu.A., Energy-4 generator for monitoring seismically active zones and electromagnetic sounding of the Earth’s crust: The experience of application in the Kovdor-2015 experiment, Seism. Prib., 2017, vol. 53, no. 3, pp. 55–73.

    Google Scholar 

  21. 21

    Kolobov, V.V., Barannik, M.B., Ivonin, V.V., Selivanov, V.N., Zhamaletdinov, A.A., Shevtsov, A.N., and Skorokhodov, A.A., Experience of application of the “Energy-4” generator for DC and CSAMT electromagnetic soundings in the “Murman-2018” experiment, Tr. Kol’sk. Nauchn. Tsentra RAN, 2018, vol. 17, no. 8, pp. 7–20.

    Article  Google Scholar 

  22. 22

    Kopytenko, E.A., Palshin, N.A., Poljakov, S.V., Schennikov, A.V., Reznikov, B.I., and Samsonov, B.V., New portable multifunctional broadband MT System, Abstracts of 20th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth, Giza, Egypt, 2010.

  23. 23

    Kovtun, A.A., Moiseev, O.N., Vagin, S.A., Vardanyants, I.L., Kokvina, E.L., Savel’ev, A.A., and Uspenskii, N.I., MT and AMT soundings on the Kola Peninsula and in Karelia, in Glubinnaya elektroprovodnost’ Baltiiskogo shchita (Deep Electrical Conductivity of the Baltic Shield), Van’yan, L.L. and Kh’elt, S.E., Eds., Petrozavodsk: Karel. fil. AN SSSR, 1986, pp. 34–48.

  24. 24

    Kovtun, A.A., Vardanyants, I.L., Legen’kova, N.P., Smirnov, M.Yu., and Uspenskii, N.I., Structural features of the Karelian region from geoelectric studies, in Glubinnoe stroenie i seismichnost’ Karelo-Kol’skogo regiona i ego obramleniya (Deep Structure and Seismicity of the Karelian Region and Its Margins), Sharov, N.V., Ed., Petrozavodsk: Karel. nauchn. tsentr RAN, 2004, pp. 102–130.

  25. 25

    Kraev, A.P., Semenov, A.S., and Tarkhov, A.G., Superdeep electric sounding, Razved. Okhr. Nedr, 1947, no. 3, pp. 40–41.

  26. 26

    Krasnobaeva, A.G., D’yakonov, B.P., Astaf’ev, P.F., Batalova, O.V., Vishnev, V.S., Gavrilova, I.E., Zhuravleva, R.B., and Kirillov, S.K., The structure of the northwestern part of the Baltic shield from magnetotelluric data, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 6, pp. 65–73.

  27. 27

    Lazareva, N.V., Application of magnetotelluric methods in Pechenga region, in Voprosy razvedochnoi geofiziki (Problems of Exploration Geophysics), Moscow: Nedra, 1964, pp. 105–107.

  28. 28

    Moisio, K., Numerical lithospheric modelling rheology stress and deformation in the Central Fennoscandian Shield, Ph. D. Dissertation, Oulu: University of Oulu, 2005.

  29. 29

    Moisio, K. and Kaikkonen, P., Three-dimensional numerical thermal and rheological modelling in the central Fennoscandian Shield, J. Geodyn., 2006, vol. 42, nos. 4–5, pp. 95–114.

    Article  Google Scholar 

  30. 30

    Nikolaevskii, V.N., Dilatancy rheology of the lithosphere and tectonic stress waves, in Osnovnye problemy seismotektoniki (Key Problems of Seismotectonics), Shchukin, Yu.K., Ed., Moscow: Nauka, 1986, pp. 51–68.

  31. 31

    Ranalli, G., Rheology and deep tectonics, Ann. Geofis., 1997, vol. 40, no. 3, pp. 671–680.

    Google Scholar 

  32. 32

    Rokityanskiy I.I., Deep magnetotelluric sounding in the presence of distortions from horizontal inhomogeneities, in Geofizicheskii sbornik, vyp. 43 (Collected Articles on Geophysics, vol. 43), Kiev: Naukova dumka, 1971, pp 71–78.

  33. 33

    Samson, J.C., Deep resistivity measurements in the Fraser Valley, British Columbia, Can. J. Earth Sci., 1969, vol. 6, no. 5, pp. 1129–1136.

    Article  Google Scholar 

  34. 34

    Semenov, A.S., The nature of electrical conductivity of the ancient crystalline basement, Vestn. Leningrad. Univ., 1970, no. 12, pp. 19–26.

    Google Scholar 

  35. 35

    Semenov, A.S., Electric section of crystalline rocks of ancient shields, in Voprosy geofiziki, vyp. 27 (Problems of Geophysics, vol. 27), Leningrad: LGU, 1978, pp. 108–113.

  36. 36

    Semenov, V.Yu., Obrabotka dannykh magnitotelluricheskogo zondirovaniya (Magnetotelluric Data Processing), Moscow: Nedra, 1985.

  37. 37

    Semenov, A.S. and Zhamaletdinov, A.A., Deep electrical sounding, Vestn. Leningrad. Univ., Ser.: Geol. Geogr., 1981, vol. 18, no. 3, pp. 5–11.

    Google Scholar 

  38. 38

    Shevtsov A.N., Frequency sounding method for studying electrical conductivity of the upper crust of the Baltic shield, Cand. Sci. (Phys.-Math.) Dissertation, St. Petersburg: Saint-Petersburg State Univ., 2001.

  39. 39

    Shevtsov, A.N., Joint interpretation of magnetotelluric and CSAMT data on the Kola Peninsula (Kovdor area), in Springer Proceedings in Earth and Enviramental Sciences: Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields, Nurgaliev, D. and Khairullina, N., Eds., Cham: Springer, 2019a, pp. 23–30.

  40. 40

    Shevtsov, A.N., Processing and interpretation of deep controlled-source audio magnetotelluric (CSAMT) sounding in combination with audio magnetotellurics (AMT) data (Murman-2018 experiment), Nauka Tekhnol. Razrab. (Thematic Issue “Methodological Developments for Electromagnetic Soundings with Controlled Sources”), 2019b, vol. 98, no. 4, pp. 19–33.

  41. 41

    Shevtsov, A.N., Zhamaletdinov, A.A., Kolobov, V.V., and Barannik, M.B., Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse, J. Min. Inst., 2017, vol. 224, pp. 178–188.

    Google Scholar 

  42. 42

    Skorokhodov, A.A. and Kolobov, V.V., Distance sounding and data processing in the stacking mode (Murman-2018 experiment), Nauka Tekhnol. Razrab., 2019, vol. 98, no. 4, (Thematic Issue “Methodological Developments for Electromagnetic Soundings with Controlled Sources”), pp. 43–49.

  43. 43

    Tikhonov, A.N., Enenshtein, B.S., Skugarevskaya, O.A., and Nikitina, V.N., Study of the interior structure of crystalline basement by electromagnetic methods, Dokl. Akad. Nauk SSSR, 1967, vol. 173, no. 5, pp. 1062–1064.

    Google Scholar 

  44. 44

    Vagin, S.A., Vardanyants, I.A., Kovtun, A.A., Kokvina, E.L., Moiseev, O.N., Savel’ev, A.A., and Uspenskii, N.I., Coastal effect and crustal resistivity on Kola Peninsula, Geomagn. Aeron., 1985, vol. 25, no. 3, pp. 468–473.

    Google Scholar 

  45. 45

    van Zijl, J.S.V. and Joubert, S.J., A crustal geoelectrical model for South African Precambrian granitic terrains based on deep Schlumberger soundings, Geophysics, 1975, vol. 40, no. 4, pp. 657–663.

    Article  Google Scholar 

  46. 46

    Vanyyan, L.L., Elektromagnitnye zondirovaniya (Electromagnetic Sounding), Moscow: Nauchn. mir, 1997.

  47. 47

    Vanyyan, L.L. and Hyndman, R.D., On the origin of electrical conductivity in the consolidated crust, Izv. Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 268–284.

    Google Scholar 

  48. 48

    Vanyan, L.L. and Pavlenkova, N.I., Low velocity and low electrical resistivity layer at the base of the upper crust under the Baltic Shield, Izv. Phys. Solid Earth, 2002, vol. 38, no. 1, pp. 33–41.

    Google Scholar 

  49. 49

    Vanyan, L., Tezkan, B., and Palshin, N., Low electrical resistivity and seismic velosity at the base of the upper crust as indicator of rheologically weak layer, Surv. Geophys., 2001, vol. 22, pp. 131–154.

    Article  Google Scholar 

  50. 50

    Velikhov, E.P., Zhukov, B.P., Gorbunov, G.I., Volkov, Yu.M., Zhamaletdinov, A.A., Lisin, A.S., Tokarev, A.D., Kuksa, Yu.I., Kirillov, S.K., and Poltanov, A.E., Deep electrical section of the basement according to the results of MHD sounding on Kola Peninsula, Dokl. Akad. Nauk SSSR, 1984, vol. 274, no. 5, pp. 1061–1064.

    Google Scholar 

  51. 51

    Velikhov, E.P., Volkov, Yu.M., Dreizin, Yu.A., et al., Geoelektricheskie issledovaniya s moshchnym istochnikom toka na Baltiiskom shchite (Geoelectric Studies with a Powerful Current Source on the Baltic Shield), Velikhov, E.P., Ed., Moscow: Nauka, 1989.

    Google Scholar 

  52. 52

    Velikhov, E.P., Zhamaletdinov, A.A., Sobchakov, L.A., Veshev, A.V., Saraev, A.K., Tokarev, A.D., Shevtsov, A.N., Vasiliev, A.V., Sonnikov, A.G., and Yakovlev, A.V., Extra-low frequency sounding of the Earth’s crust with a high-power antenna, Dokl. Earth Sci., 1996, vol. 341, no. 2, pp. 12–16.

    Google Scholar 

  53. 53

    Veshev, A.V., Elektroprofilirovanie na postoyannom i peremennom toke (EM and DC Electrical Profiling), 2nd ed., Leningrad: Nedra, Leningr. Otd., 1980.

  54. 54

    Yakovlev, A.V., Electric section of the upper part of the crystalline basement, in Stroenie litosfery Baltiiskogo shchita (The Structure of Lithosphere of the Baltic Shield), Moscow: Nats. Geofiz. Kom. RAN, 1993, pp. 76–78.

  55. 55

    Zhamaletdinov, A.A., Normal electrical section of the crystalline basement and its geothermal interpretation based on MHD sounding data on the Kola Peninsula, in Glubinnye elektromagnitnye zondirovaniya s primeneniem impul’snykh MGD-generatorov (Deep Electromagnetic Sounding Using Pulsed MHD Generators), Velikhov, E.P., Ed., Apatity: Kol. fil. AN SSSR, 1982, pp. 35–46.

  56. 56

    Zhamaletdinov, A.A., Model’ elektroprovodnosti litosfery po rezul’tatam issledovanii s kontroliruemymi istochnikami polya (Baltiiskii shchit, Russkaya platforma) (Electrical Conductivity Model of the Lithosphere Based on the Results of Controlled-Source Studies (Baltic shield, Russian platform)), Leningrad: Nauka, Leningr. Otd., 1990.

  57. 57

    Zhamaletdinov, A.A., Shevtsov, A.N., Korotkova, T.G., Kopytenko, Yu.A., Ismagilov, V.S., Petrishchev, M.S., Efimov, B.V., Barannik, M.B., Kolobov, V.V., Prokopchuk, P.I., Smirnov, M.Yu., Vagin, S.A., Pertel’, M.I., Tereshchenko, E.D., Vasil’ev A.N., et al., Deep electromagnetic sounding of the lithosphere in the eastern Baltic (fennoscandian) shield with high-power controlled sources and industrial power transmission lines (FENICS experiment), Izv. Phys. Solid Earth, 2011, vol. 47, no. 1, pp. 2–22.

    Article  Google Scholar 

  58. 58

    Zhamaletdinov, A.A., Teoriya i metodika glubinnykh elektromagnitnykh zondirovanii s moshchnymi kontroliruemymi istochnikami (Opyt kriticheskogo analiza) (Theory and Methodology of Deep Electromagnetic Sounding with Powerful Controlled Sources: Experience of Critical Analysis), St. Petersburg: SOLO, 2012.

  59. 59

    Zhamaletdinov, A.A., The nature of the Conrad discontinuity with respect to the results of kola superdeep well drilling and the data of a deep geoelectrical survey, Dokl. Earth Sci., 2014, vol. 455, no. 1, pp. 350–354.

    Article  Google Scholar 

  60. 60

    Zhamaletdinov, A.A., Electrical conductivity of the Earth’s crust in the region of ZEVS ELF antenna based on the results of resistivity and EM soundings (Murmansk block), in Vzaimodeistvie elektromagnitnykh polei KNCh-SNCh diapazona s ionosferoi i zemnoi koroi, tom 2: Mater. 1-go Vseross. nauchno-prakt. semin. mezhdunar. uchastiem (Interaction of ULF-ELF Electromagnetic Fields with the Ionosphere and Earth’s Crust, vol. 2: Proc. 1st All-Russ. Sci. Tech. Workshop with Int. Participation), Velikhov, E.P., Ed., Apatity, 2014, Apatity: GI KNTs RAN, 2015, pp. 63–71.

  61. 61

    Zhamaletdinov, A.A., Tokarev, A.D., Vasil’ev, A.N., Vinogradov, Yu.A., Kolodin, G.N., and Kazantsev, N.P., Frequency electromagnetic sounding at the Murmansk block, in Problemy kompleksnoi interpretatsii geologo-geofizicheskikh dannykh (Problems of Complex Interpretation of Geological and Geophysical Data), Glebovitskii, V.A. and Sharov, N.V., Eds., Leningrad: Nauka, Leningr. Otd., 1991, pp. 94–97.

  62. 62

    Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Kolesnikov, V.E., Skorokhodov, A.A., Korotkova, T.G., Kolobov, V.V., Ivonin, V.V., Ryazantsev, P.A., and Birulya, M.A., The Kovdor-2015 experiment: study of the parameters of a conductive layer of dilatancy–diffusion nature (DD Layer) in the Archaean crystalline basement of the Baltic Shield, Dokl. Earth Sci., 2017, vol. 474, no. 2, pp. 641–645.

    Article  Google Scholar 

  63. 63

    Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Skorokhodov, A.A., Kolobov, V.V., Ivonin, V.V., and Kolesnikov, V.E., The Murman-2018 Experiment on remote sensing in order to study the “impenetrability” boundary at the transition between brittle and plastic states of the rystalline Earth’s crust, Dokl. Earth Sci., 2019, vol. 486, no. 1, pp. 575–579.

    Article  Google Scholar 

  64. 64

    Zhdanov, M.S., Elektrorazvedka (Electrical Prospecting), Moscow: Nedra, 1986.

    Google Scholar 

Download references


We thank V.V. Kolesnikov for his helping in topographic correlation of the data. We are particularly grateful to two anonymous reviewers for their highly professional comments.


The work was supported by the Russian Foundation for Basic Research under project no. 18-05-00528 and carried out in partial fulfillment of the state task of the Ministry of Education and Science of the Russian Federation within projects 0226-2019-0052 (Geological Institute of the Kola Science Centre of the Russian Academy of Sciences) and 0226-2019-0067 (Northern Energetics Research Centre of the Kola Science Centre of the Russian Academy of Sciences).

Author information



Corresponding author

Correspondence to A. A. Zhamaletdinov.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N. et al. Deep Electrical Conductivity of the Archaean Blocks of Kola Peninsula in the Light of the Results of Murman-2018 Experiment: A Review. Izv., Phys. Solid Earth 57, 61–83 (2021).

Download citation


  • electrical conductivity
  • distance sounding
  • controlled source
  • frequency sounding
  • Murmansk block
  • brittleness
  • ductility
  • impenetrability boundary
  • intermediate conductive layer