Estimation of Hydrodynamic Effect on Tidal Variations in Gravity in the Transition Zone from the Continent to the Sea of Japan

Abstract—The residual vector В (B, β) calculated from the difference of the observed tidal variations in gravity Аobs(А, α) and tidal response of the Earth R (R, 0) for three variants of the models (DDW99, calculations in (Spiridonov, 2017) with PREM and IASP91) is compared with the total oceanic load vector L(L, λ) for the theoretical and synthesized ocean models. The total theoretical oceanic load is obtained for five ocean tide models (SCW80, FES95, FES2012, CSR40, NAO99) in the ATLANTIDA3.1_2014 program. The synthesized oceanic load is also calculated in this program but the component of the gravimetric effect describing the contribution from water masses is specified by the sea-level measurements at two observation points, one northwest of the stationary gravimetric point and the other in the immediate vicinity of it. The validity of the empirical sea level data was checked by their comparison with the calculated gravimetric effect from water masses obtained in the ATLANTIDA3.1_2014 program.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Ardyukov, D.G., Kalish, E.N., Nosov, D.A., Sizikov, I.S., Smirnov, M.G., Stus, Yu.F., Timofeev, V.Yu., Kulinich, R.G., and Valitov, M.G., Absolute gravity measurements at Cape Shultz, Giroskopiya Navig. 2015, vol. 90, no. 3, pp. 13–18. https://doi.org/10.17285/0869-7035.2015.23.3.013-018

    Article  Google Scholar 

  2. 2

    Baker, T.F. and Bos, M.S., Validating Earth and ocean models using tidal gravity measurements, Geophys. J. Int., 2003, vol. 152, no. 2, pp. 468–485.

    Article  Google Scholar 

  3. 3

    Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Picot, N., Finite Element Solution FES2014, a new tidal model—Validation results and perspectives for improvements, Abstracts of ESA Living Planet Symposium 2016, Prague, 2016, Prague: ESA Special Publication, 2016, Paper ID 1956.

  4. 4

    Dehant, V., Tidal parameters for an inelastic Earth, Phys. Earth Planet. Inter., 1987, vol.49, nos. 1–2, pp. 97–116.

    Article  Google Scholar 

  5. 5

    Dehant, V., Defraigne, P., and Wahr, J.M., Tides for a convective Earth, J. Geophys. Res., 1999, vol. 104, no. B1, pp. 1035–1058.

    Article  Google Scholar 

  6. 6

    Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 297–356.

    Article  Google Scholar 

  7. 7

    Egbert, G.D. and Erofeeva, S., Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 2002, vol. 19, no. 2, pp. 183–204.

    Article  Google Scholar 

  8. 8

    Egbert, G.D., Bennett, A.F., and Foreman, M.G.G., TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 1994, vol. 99, no. C12, pp. 24 821–24 852.

    Article  Google Scholar 

  9. 9

    Gornov, P.Yu., Relationship of the thermal conductivity of rocks in the Komsomol’sk ore district (Khabarovsk Territory) with minerageny and metasomatism, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 493–499.

    Article  Google Scholar 

  10. 10

    Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 1995, vol. 122, no. 1, pp. 108–124.

    Article  Google Scholar 

  11. 11

    Matsumoto, K., Takanezawa, T., and Ooe, M., Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, J. Oceanogr., 2000, vol. 56, pp. 567–581.

    Article  Google Scholar 

  12. 12

    Melchior, P.J., The Earth Tides, Oxford: Pergamon Press, 1966.

    Google Scholar 

  13. 13

    Molodenskii, M.S., Elastic tides, free nutation and some questions of the structure of the Earth, in Tr. Geofiz. Inst. Akad. Nauk SSSR (Proc. Geophys. Inst. Acad. Sci. USSR), vol. 146, no. 19, Moscow: AN SSSR, 1953, pp. 3–52.

  14. 14

    Molodenskii, M.S., Tides in an elastic rotating Earth with a liquid core, in Zemnye prilivy i vnutrennee stroenie Zemli (Earth’s Tides and the Internal Structure of the Earth), Pariiskii, N.N., Ed., Moscow: Nauka, 1967, pp. 3–9.

  15. 15

    Proshkina, Z.N., Valitov, M.G., Kulinich, R.G., and Kolpashchikova, T.N., Study of tidal gravity variations in the transition zone from continent to the Sea of Japan, Vestn. KRAUNTs, Nauki Zemle, 2015, vol. 27, no. 3, pp. 71–79.

    Google Scholar 

  16. 16

    Rutenko, A.N., The effect of internal waves on the sound propagation in the shelf zone of the Sea of Japan in different seasons, Acoust. Phys., 2005, vol. 51, no. 4, pp. 449–456.

    Article  Google Scholar 

  17. 17

    Schiwiderski, E.W., Ocean Tides, Part I: Global ocean tidal equations, Part II: A hydrodynamical interpolation model, Mar. Geod., 1980, vol. 3, nos. 1–4, pp. 161–217 and 219–255.

  18. 18

    Schiwiderski, E.W., Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2, Mar. Geod., 1983, vol. 6, nos. 3–4, pp. 219–265.

    Article  Google Scholar 

  19. 19

    Spiridonov, E.A., Latitude dependence of amplitude factor δ for degree 2 tides, Russ. Geol. Geophys., 2016, vol. 57, no. 4, pp. 629–636.

    Article  Google Scholar 

  20. 20

    Spiridonov, E.A., Tidal amplitude delta factors and phase shifts for an oceanic Earth, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 8, pp. 813–846.

    Article  Google Scholar 

  21. 21

    Spiridonov, E., Vinogradova, O., Boyarskii, E., and Afanaseva, L., ATLANTIDA3.1_2014 for Windows: A software for tidal prediction, Bull. Inf. Marées Terrestres, 2015, vol. 149, pp. 12063–12082.

    Google Scholar 

  22. 22

    Spiridonov, E.A., Yushkin, V.D., Vinogradova, O.Yu., and Afanas’eva, L.V., ATLANTIDA3.1_2014 software for Earth tide prediction: a new version, Nauka Tekhnol. Razrab., (Special Issue “Applied Geophysics: New Developments and Results, part 2: Navigation and Space Research”), 2017, vol. 96, no. 4, pp. 19–36.

  23. 23

    Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM № 2015619567 (Certificate of state registration of computer programs No. 2015619567). Dated September 8, 2015.

  24. 24

    Timofeev, V.Yu., Ducarme, B., van Ruymbeke, M., Gornov, P.Yu., Everaerts, M., Gribanova, E.I., Parovyshnii, V.A., Semibalamut, V.M., Woppelmann, G., and Ardyukov, D.G., Transcontinental tidal transect: European Atlantic coast-Southern Siberia-Russian Pacific coast, Izv. Phys. Solid Earth, 2008, vol. 44, no.5, pp. 388–400.

    Article  Google Scholar 

  25. 25

    Timofeev, V.Yu., Ardyukov, D.G., Timofeev, A.V., Boyko, E.V., Valitov, M.G., Kulinich, R.G., Kolpashchikova, T.N., Proshkina, Z.N., Ducarme, B., and Naumov, S.B., Ocean tidal models and tidal gravity observation, Oceanology, 2020, vol. 60, no. 1, pp. 29–39.

    Article  Google Scholar 

  26. 26

    Van Camp, M. and Vauterin, P., TSoft: Graphical and interactive software for the analysis of time series and Earth tides, Comput. Geosci., 2005, vol. 31, no. 5, pp. 631–640.

    Article  Google Scholar 

  27. 27

    Vinogradova, O.Yu. and Spiridonov, E.A., Comparative analysis of oceanic corrections to gravity calculated from the PREM and IASP91 models, Izv. Phys. Solid Earth, 2012, vol. 48, no.2, pp. 162–170.

    Article  Google Scholar 

  28. 28

    Vladimirova, I.S., Modelling of postseismic processes in subduction regions, Geodyn. Tectonophys., 2012, vol. 3, no. 2, pp. 167–178.

    Article  Google Scholar 

  29. 29

    Wahr, J.M., A normal mode expansion for the forced response of rotating Earth, Geophys. J. R. Astron. Soc., 1981a, vol. 64, no. 3, pp. 651–675.

    Article  Google Scholar 

  30. 30

    Wahr, J.M., Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981b, vol. 64, no. 3, pp. 677–703.

    Article  Google Scholar 

  31. 31

    Wahr, J.M., The forced nutations of an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981c, vol. 64, no. 3, pp. 705–727.

    Article  Google Scholar 

  32. 32

    Wahr, J.M. and Sasao, T., A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation”, Geophys. J. R. Astron. Soc., 1981, vol. 64, no. 3, pp. 747–765.

    Article  Google Scholar 

  33. 33

    Wahr, J.M., Sasao, T., and Smith, M.L., Effect of the fluid core on changes in the length of day due to long period tides, Geophys. J. R. Astron. Soc., 1981, vol. 64, no. 3, pp. 635–650.

    Article  Google Scholar 

  34. 34

    Wenzel, H.G., The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, 1996, vol. 124, pp. 9425–9439.

    Google Scholar 

Download references

Funding

The work was carried out in partial fulfillment of state-funded project “Spatiotemporal changes of geophysical fields, their relationship with the structure, geodynamics and seismotectonic processes in the lithosphere of the Far Eastern seas of Russia and their framing,” state registration no. AAAA-A17-117030110032-3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. N. Proshkina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Proshkina, Z.N., Valitov, M.G., Kolpashchikova, T.N. et al. Estimation of Hydrodynamic Effect on Tidal Variations in Gravity in the Transition Zone from the Continent to the Sea of Japan. Izv., Phys. Solid Earth 57, 98–109 (2021). https://doi.org/10.1134/S1069351321010067

Download citation

Keywords:

  • tidal variations of gravity
  • ocean tide models
  • tidal response of solid Earth
  • sea level measurements
  • Sea of ​​Japan
  • Port Posyet
  • Vityaz Bay