Abstract—The residual vector В (B, β) calculated from the difference of the observed tidal variations in gravity Аobs(А, α) and tidal response of the Earth R (R, 0) for three variants of the models (DDW99, calculations in (Spiridonov, 2017) with PREM and IASP91) is compared with the total oceanic load vector L(L, λ) for the theoretical and synthesized ocean models. The total theoretical oceanic load is obtained for five ocean tide models (SCW80, FES95, FES2012, CSR40, NAO99) in the ATLANTIDA3.1_2014 program. The synthesized oceanic load is also calculated in this program but the component of the gravimetric effect describing the contribution from water masses is specified by the sea-level measurements at two observation points, one northwest of the stationary gravimetric point and the other in the immediate vicinity of it. The validity of the empirical sea level data was checked by their comparison with the calculated gravimetric effect from water masses obtained in the ATLANTIDA3.1_2014 program.
This is a preview of subscription content, access via your institution.







REFERENCES
- 1
Ardyukov, D.G., Kalish, E.N., Nosov, D.A., Sizikov, I.S., Smirnov, M.G., Stus, Yu.F., Timofeev, V.Yu., Kulinich, R.G., and Valitov, M.G., Absolute gravity measurements at Cape Shultz, Giroskopiya Navig. 2015, vol. 90, no. 3, pp. 13–18. https://doi.org/10.17285/0869-7035.2015.23.3.013-018
- 2
Baker, T.F. and Bos, M.S., Validating Earth and ocean models using tidal gravity measurements, Geophys. J. Int., 2003, vol. 152, no. 2, pp. 468–485.
- 3
Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Picot, N., Finite Element Solution FES2014, a new tidal model—Validation results and perspectives for improvements, Abstracts of ESA Living Planet Symposium 2016, Prague, 2016, Prague: ESA Special Publication, 2016, Paper ID 1956.
- 4
Dehant, V., Tidal parameters for an inelastic Earth, Phys. Earth Planet. Inter., 1987, vol.49, nos. 1–2, pp. 97–116.
- 5
Dehant, V., Defraigne, P., and Wahr, J.M., Tides for a convective Earth, J. Geophys. Res., 1999, vol. 104, no. B1, pp. 1035–1058.
- 6
Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 297–356.
- 7
Egbert, G.D. and Erofeeva, S., Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 2002, vol. 19, no. 2, pp. 183–204.
- 8
Egbert, G.D., Bennett, A.F., and Foreman, M.G.G., TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 1994, vol. 99, no. C12, pp. 24 821–24 852.
- 9
Gornov, P.Yu., Relationship of the thermal conductivity of rocks in the Komsomol’sk ore district (Khabarovsk Territory) with minerageny and metasomatism, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 493–499.
- 10
Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 1995, vol. 122, no. 1, pp. 108–124.
- 11
Matsumoto, K., Takanezawa, T., and Ooe, M., Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, J. Oceanogr., 2000, vol. 56, pp. 567–581.
- 12
Melchior, P.J., The Earth Tides, Oxford: Pergamon Press, 1966.
- 13
Molodenskii, M.S., Elastic tides, free nutation and some questions of the structure of the Earth, in Tr. Geofiz. Inst. Akad. Nauk SSSR (Proc. Geophys. Inst. Acad. Sci. USSR), vol. 146, no. 19, Moscow: AN SSSR, 1953, pp. 3–52.
- 14
Molodenskii, M.S., Tides in an elastic rotating Earth with a liquid core, in Zemnye prilivy i vnutrennee stroenie Zemli (Earth’s Tides and the Internal Structure of the Earth), Pariiskii, N.N., Ed., Moscow: Nauka, 1967, pp. 3–9.
- 15
Proshkina, Z.N., Valitov, M.G., Kulinich, R.G., and Kolpashchikova, T.N., Study of tidal gravity variations in the transition zone from continent to the Sea of Japan, Vestn. KRAUNTs, Nauki Zemle, 2015, vol. 27, no. 3, pp. 71–79.
- 16
Rutenko, A.N., The effect of internal waves on the sound propagation in the shelf zone of the Sea of Japan in different seasons, Acoust. Phys., 2005, vol. 51, no. 4, pp. 449–456.
- 17
Schiwiderski, E.W., Ocean Tides, Part I: Global ocean tidal equations, Part II: A hydrodynamical interpolation model, Mar. Geod., 1980, vol. 3, nos. 1–4, pp. 161–217 and 219–255.
- 18
Schiwiderski, E.W., Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2, Mar. Geod., 1983, vol. 6, nos. 3–4, pp. 219–265.
- 19
Spiridonov, E.A., Latitude dependence of amplitude factor δ for degree 2 tides, Russ. Geol. Geophys., 2016, vol. 57, no. 4, pp. 629–636.
- 20
Spiridonov, E.A., Tidal amplitude delta factors and phase shifts for an oceanic Earth, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 8, pp. 813–846.
- 21
Spiridonov, E., Vinogradova, O., Boyarskii, E., and Afanaseva, L., ATLANTIDA3.1_2014 for Windows: A software for tidal prediction, Bull. Inf. Marées Terrestres, 2015, vol. 149, pp. 12063–12082.
- 22
Spiridonov, E.A., Yushkin, V.D., Vinogradova, O.Yu., and Afanas’eva, L.V., ATLANTIDA3.1_2014 software for Earth tide prediction: a new version, Nauka Tekhnol. Razrab., (Special Issue “Applied Geophysics: New Developments and Results, part 2: Navigation and Space Research”), 2017, vol. 96, no. 4, pp. 19–36.
- 23
Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM № 2015619567 (Certificate of state registration of computer programs No. 2015619567). Dated September 8, 2015.
- 24
Timofeev, V.Yu., Ducarme, B., van Ruymbeke, M., Gornov, P.Yu., Everaerts, M., Gribanova, E.I., Parovyshnii, V.A., Semibalamut, V.M., Woppelmann, G., and Ardyukov, D.G., Transcontinental tidal transect: European Atlantic coast-Southern Siberia-Russian Pacific coast, Izv. Phys. Solid Earth, 2008, vol. 44, no.5, pp. 388–400.
- 25
Timofeev, V.Yu., Ardyukov, D.G., Timofeev, A.V., Boyko, E.V., Valitov, M.G., Kulinich, R.G., Kolpashchikova, T.N., Proshkina, Z.N., Ducarme, B., and Naumov, S.B., Ocean tidal models and tidal gravity observation, Oceanology, 2020, vol. 60, no. 1, pp. 29–39.
- 26
Van Camp, M. and Vauterin, P., TSoft: Graphical and interactive software for the analysis of time series and Earth tides, Comput. Geosci., 2005, vol. 31, no. 5, pp. 631–640.
- 27
Vinogradova, O.Yu. and Spiridonov, E.A., Comparative analysis of oceanic corrections to gravity calculated from the PREM and IASP91 models, Izv. Phys. Solid Earth, 2012, vol. 48, no.2, pp. 162–170.
- 28
Vladimirova, I.S., Modelling of postseismic processes in subduction regions, Geodyn. Tectonophys., 2012, vol. 3, no. 2, pp. 167–178.
- 29
Wahr, J.M., A normal mode expansion for the forced response of rotating Earth, Geophys. J. R. Astron. Soc., 1981a, vol. 64, no. 3, pp. 651–675.
- 30
Wahr, J.M., Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981b, vol. 64, no. 3, pp. 677–703.
- 31
Wahr, J.M., The forced nutations of an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981c, vol. 64, no. 3, pp. 705–727.
- 32
Wahr, J.M. and Sasao, T., A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation”, Geophys. J. R. Astron. Soc., 1981, vol. 64, no. 3, pp. 747–765.
- 33
Wahr, J.M., Sasao, T., and Smith, M.L., Effect of the fluid core on changes in the length of day due to long period tides, Geophys. J. R. Astron. Soc., 1981, vol. 64, no. 3, pp. 635–650.
- 34
Wenzel, H.G., The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, 1996, vol. 124, pp. 9425–9439.
Funding
The work was carried out in partial fulfillment of state-funded project “Spatiotemporal changes of geophysical fields, their relationship with the structure, geodynamics and seismotectonic processes in the lithosphere of the Far Eastern seas of Russia and their framing,” state registration no. AAAA-A17-117030110032-3.
Author information
Affiliations
Corresponding author
Additional information
Translated by M. Nazarenko
Rights and permissions
About this article
Cite this article
Proshkina, Z.N., Valitov, M.G., Kolpashchikova, T.N. et al. Estimation of Hydrodynamic Effect on Tidal Variations in Gravity in the Transition Zone from the Continent to the Sea of Japan. Izv., Phys. Solid Earth 57, 98–109 (2021). https://doi.org/10.1134/S1069351321010067
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- tidal variations of gravity
- ocean tide models
- tidal response of solid Earth
- sea level measurements
- Sea of Japan
- Port Posyet
- Vityaz Bay