Skip to main content
Log in

On Solving the Forward Problem of Gravimetry in Curvilinear and Cartesian Coordinates: Krasovskii’s Ellipsoid and Plane Modeling

Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Correcting the effects of the sphericity of the Earth in the results of the interpretation of gravimetric data is a topical issue in modern gravimetry. Estimating the error of the gravity field calculations due to the replacement of the spherical Earth model by the plane model is an important part of this problem. In this paper, a method is proposed for transforming the plane density models into spherical ones and vice versa. Algorithms for calculating the vertical component of gravity field for both model types are presented. For two extensive plane models of the Earth’s density, their transformation into spherical models is carried out and the resulting gravity fields are compared. The relative root mean square residuals between the fields calculated with this replacement are at most 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bouman, J., Ebbing, J., Meekes, S., Fattah, R.A., Fuchs, M., Gradmann, S., Haagmans, R., Lieb, V., Schmidt, M., Dettmering, D., and Bosc, W., GOCE gravity gradient data for lithospheric modeling, Int. J. Appl. Earth Obs. Geoinform., 2015, vol. 35A, pp. 16–30.

    Article  Google Scholar 

  • Dolgal’, A.S. and Bychkov, S.G., Estimating the differences of gravity anomalies for a plane and spherical Earth’s models, Mezhdunarodnaya konferentsiya “Devyatye nauchnye chteniya Yu.P. Bulashevicha. Glubinnoe stroenie, geodinamika, teplovoe pole Zemli, interpretatsiya geofizicheskikh polei” (Int. Conf. “The Ninth Yu.P. Bulashevich Scientific Readings: Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Anomalies), Yekaterinburg, 2017, pp. 169–173.

    Google Scholar 

  • Dolgal’, A.S., Simanov, A.A., and Khokhlova, V.V., Allowance for the Earth’s sphericity in quantitative interpretation of gravity anomalies, Georesursy, 2015, vol. 2, no. 4, pp. 56–61.

    Article  Google Scholar 

  • Druzhinin, V.S., Martyshko, P.S., Nachapkin, N.I., and Osipov, V.Yu., Stroenie verkhnei chasti litosfery i neftegazonosnost' nedr Ural’skogo regiona (The Structure of the Upper Part of the Lithosphere and the Oil-and-Gas Presence in the Earth’s Interior in the Urals Region), Yekaterinburg: IGF UrO RAN, 2014.

    Google Scholar 

  • Gravirazvedka. Spravochnik geofizika (Gravity Prospecting: Geophysicist’s Handbook), Mudretsova, E.A., Veselov, K.E., Eds., Moscow: Nedra, 1990.

  • Heck, B. and Seitz, K., A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling, J. Geod., 2007, no. 81, pp. 121–136.

    Article  Google Scholar 

  • Krüger, L., Konforme abbildung des erdellipsoids in die ebene, Veröoff. Kgl. Preuβ. Geod. Inst. N. F, 1912, vol. 52.

  • Kuprienko, P.Ya., Makarenko, I.B., Starostenko, V.I., and Legostaeva, O.V., Three-dimensional density model of the Earth’s crust and upper mantle of the Ukrainian Shield, Geofiz. Zh., 2007, vol. 29, no. 5, pp. 3–27.

    Google Scholar 

  • Ladovskii, I.V., Byzov, D.D., and Chernoskutov, A.I., O probleme postroeniya srednemasshtabnykh plotnostnykh modelei dlya sferoidal’noi zemli (On the problem of constructing the medium-scale density models for spheroidal Earth), Ural’skii Geofiz. Vestn., 2017, no. 1, pp. 73–98.

    Google Scholar 

  • Martyshko, P.S., Ladovskii, I.V., and Byzov, D.D., Solution of the gravimetric inverse problem using multidimensional grids, Dokl., Earth Sci., 2013, vol. 450, no. 2, pp. 666–671.

    Article  Google Scholar 

  • Martyshko, P.S., Byzov, D.D., Ladovskii, I.V., and Tsidaev, A.G., 3D density models construction method for layered media, Proc. 15th Int. Multidisciplinary Scientific GeoConference (SGEM 2015), June 18–24, 2015, Albena, Bulgaria., 2015, book 2, vol. 1, pp. 425–432. doi 10.5593/ SGEM2015/B21/S8.053

    Google Scholar 

  • Martyshko, P.S., Ladovskiy, I.V., and Byzov, D.D., Stable methods of interpretation of gravimetric data, Dokl., Earth Sci., 2016a, vol. 471, no. 2, pp. 1319–1322.

    Article  Google Scholar 

  • Martyshko, P.S., Ladovskii, I.V., Fedorova, N.V., Byzov, D.D., and Tsidaev, A.G., Teoriya i metody kompleksnoi interpretatsii geofizicheskikh dannykh (Theory and Methods for Complex Interpretation of Geophysical Data), Yekaterinburg: UrO RAN, 2016b.

    Google Scholar 

  • Morozov, V.P., Kurs sferoidicheskoi geodezii. Izd. 2, per. i dop. (A Course in Spheroidal Geodesy, 2nd ed., modified and expanded), Moscow: Nedra, 1979.

    Google Scholar 

  • Pavlenkova, N.I., Egorova, T.P., Starostenko, V.I., and Kozlenko, V.G., Three-dimensional density model of the European lithosphere, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1991, no. 4, pp. 3–23.

    Google Scholar 

  • Starostenko, V.I. and Manukyan, A.G., Solution of the forward problem of gravimetry on spherical Earth, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1983, no. 12, pp. 34–49.

    Google Scholar 

  • Starostenko, V.I., Manukyan, A.G., and Zavorot’ko, A.N., Metodika resheniya pryamykh zadach gravimetrii i magnitometrii na sharoobraznykh planetakh (Methods for Solving the Forward Problems of Gravimetry and Magnetimetry on Spherical Planets), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  • Strakhov, V.N. and Romanyuk, T.V., Vosstanovlenie plotnostei zemnoi kory i verkhnei mantii po dannym GSZ i gravimetrii (Reconstructing the densities of the Earth’s crust and upper mantle from DSS and gravimetry data), Izv. Akad. Nauk SSSR, Fiz. Zemli, 1984, no. 6, pp. 44–63.

    Google Scholar 

  • Uieda, L., Barbosa, V., and Braitenberg, C., Tesseroids: forward-modeling gravitational fields in spherical coordinates, Geophysics, 2015, vol. 81, no. 5, pp. f41–f48.

    Article  Google Scholar 

  • Wild-Pfeiffer, F., Augustin, W., and Heck, B., Optimierung der rechenzeit bei der berechnung der 2. ableitungen des gravitationspotentials von massenelementen, Zeitschrift fur Geodasie, 2007, vol. 132, no. 6, pp. 377–384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Martyshko.

Additional information

Original Russian Text © P.S. Martyshko, I.V. Ladovskij, D.D. Byzov, A.I. Chernoskutov, 2018, published in Fizika Zemli, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyshko, P.S., Ladovskij, I.V., Byzov, D.D. et al. On Solving the Forward Problem of Gravimetry in Curvilinear and Cartesian Coordinates: Krasovskii’s Ellipsoid and Plane Modeling. Izv., Phys. Solid Earth 54, 565–573 (2018). https://doi.org/10.1134/S1069351318040079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318040079

Navigation