Izvestiya, Physics of the Solid Earth

, Volume 54, Issue 2, pp 233–251 | Cite as

Strong Earthquakes in 2009–2016 in Central Italy: Tectonic Position, Seismic History, and Aftershock Processes

  • A. I. Lutikov
  • E. A. Rogozhin
  • G. Yu. Dontsova
  • M. S. Kuchai
Article
  • 5 Downloads

Abstract

Based on the seismological, geodynamic, and seismotectonic data on the strongest series of earthquakes in 2009–2017 in Central Italy, which were collected by many researchers, mostly Italian, the tectonic position of these events is determined and the seismic history of the region over more than 2000 years of observations of seismic manifestations in Italy is traced in the context of the strong events of the beginning of the 21st century. The aftershock processes of these earthquakes are investigated and, as a result, the possibility of a series of strong aftershocks of the earthquake of October 30, 2016 (MW = 6.6) is predicted in advance of the actual occurrence of these events on January 18, 2017.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, R.A., Serpelloni, E., Hreinsdóttir S., et al., Synconvergent extension observed using the RETREAT GPS network, northern Apennines, Italy, J. Geophys. Res., 2012, vol. 117, B04408. doi 10.1029/2011JB008744Google Scholar
  2. Buttinelli, M., Chiarabba, C., Anselmi, M., Bianchi, I., De Rita, D., and Quattrocchi, F., Crustal structure of Northern Latium (central Italy) from receiver functions analysis: new evidences of a post-collisional back-arc margin evolution, Tectonophysics, 2014, vol. 621, pp. 148–158.Google Scholar
  3. Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E., and Piacentini, T., Sedimentary and tectonic evolution of Pio-Pleistocene lacustrine deposits of Fucino Basin (Central Italy). Sediment. Geol., 2002, vol. 148, pp. 29–59.CrossRefGoogle Scholar
  4. Cello, G., Deiana, G., Mangano, P., Mazzoli, S., and Tondi, E., Evidence for surface faulting during the September 26, 1997, Colfiorito (Central Italy) earthquakes. J. Earthquake Eng., 1998, vol. 2, no. 2, pp. 303–324.Google Scholar
  5. Chiarabba, C., Bagh, S., Bianchi, I., De Gori, P., and Barchi, M., Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions, Earth Planet. Sci. Lett., 2010, vol. 295, nos. 3–4, pp. 462–476.CrossRefGoogle Scholar
  6. Daskalaki, E., Minadakis, G., Papadopoulos, G.A., Spiliotis, K., and Siettos, C., Foreshocks and short-term hazard assessment of large earthquakes using complex networks: the case of the 2009 L’Aquila earthquake, Nonlinear Processes Geophys., 2016, vol. 23, no. 4, pp. 241–256.CrossRefGoogle Scholar
  7. De Gori, P., Lucente, F.P., Chiarabba, C., Lombardi, A.M., and Montuori, C., Heterogeneities along the 2009 L’Aquila normal fault inferred by the b-value distribution, Geophys. Res. Lett., 2012, vol. 39, no. 15, L15304.Google Scholar
  8. Dziewonski, A.M., Chou, T.A., and Woodhouse, J.H., Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 1981, vol. 86, p. 2825–2852.CrossRefGoogle Scholar
  9. Gabsatarova, I.P. Lutikov, A.I., et al., Issledovanie parametrov seismicheskogo rezhima osnovnykh seismoaktivnykh regionov Severnoi Evrazii s tsel’yu utochneniya seismicheskogo potentsiala i osobennostei razvitiya ochagovykh zon (Studying the Parameters of Seismic Regime in the Main Seismically Active Regions of North Eurasia for Refining the Seismic Potential and Peculiarities in the Development of the Source Zones), Research Report no. 0152-2015-0001, Obninsk: Edinaya geofizicheskaya sluzhba RAN, 2016.Google Scholar
  10. Galadini, F. and Galli, P., The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in Central Apennines, Tectonophysics, 1999, vol. 308, pp. 143–170.CrossRefGoogle Scholar
  11. Galli, P., Galadini, F., and Pantosti, D., Twenty years of paleoseismology in Italy, Earth Sci. Rev., 2008, 2008, vol. 88, pp. 89–117.CrossRefGoogle Scholar
  12. Gasperini, P., Camassi, R., Mirto, C., Stucchi, M., et al., Catalogo Parametrico dei Terremoti Italiani, 2004. http://emidius.mi.ingv.it/CPTI04/.Google Scholar
  13. Gulia, L. and Wiemer, S., The influence of tectonic regimes on the earthquake size distribution: a case study for Italy, Geophys. Res. Lett., 2010, vol. 37, no. 10, L10305, doi 10.1029/2010GL043066CrossRefGoogle Scholar
  14. Kanamori, H., The energy release of great earthquakes, J. Geophys. Res., 1977, vol. 82, pp. 2981–2987.CrossRefGoogle Scholar
  15. Kanamori, H., Quantification of earthquakes, Nature, 1978, vol. 271, no. 5644, pp. 411–414.CrossRefGoogle Scholar
  16. Livio, F. et al. (Central Italy Earthquake Collab.), Surface faulting during the August 24, 2016, Central Italy earthquake (MW 6.0): preliminary results, Ann. Geophys., 2016, vol. 59, Fast Track 5. doi 10.4401/ag7179Google Scholar
  17. Lutikov, A.I., Seismic monitoring of source zones of strong earthquakes, Izv., Phys. Solid Earth, 2008, vol. 44, no. 3, pp. 181–192.CrossRefGoogle Scholar
  18. Lutikov, A.I. and Rogozhin, E.A., Variations in the intensity of the global seismic process in the 20th and the beginning of 21st centuries, Izv., Phys. Solid Earth, 2014, vol. 50, no. 4, pp. 484–500.CrossRefGoogle Scholar
  19. Michetti, A.M., Brunamonte, F., Serva, L., and Vittori, E., Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy), J. Geophys. Res., 1996, vol. 101, pp. 5921–5936.CrossRefGoogle Scholar
  20. Michetti, A.M. et al. (Collab. under the INQUA Subcommission on Paleoseismicity), The INQUA scale: An innovative approach for assessing earthquake intensities based on seismically-induced ground effects in natural environment: special paper, in Memorie Descriptive della Carta Geologica D’Italia, Vittori, E and Commerci, V., Eds., Roma: SystemCart, 2004, vol. 67 (Special Paper).Google Scholar
  21. Pantosti, D., D’Addezio, G., and Cinti, F., Paleoseismicity of the Ovindoni-Pezza fault (Central Apennines): geological evidence for a large unknown Middle Age earthquake, J. Geophys. Res., 1996, vol. 101, pp. 5937–5959.CrossRefGoogle Scholar
  22. Petricca, P., Carafa, M.C., Barba, S., and Carminati, E., Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region, Mar. Pet. Geol., 2013, vol. 42, pp. 160–181.CrossRefGoogle Scholar
  23. Piccardi, L., Sani, F., Moratti, G., et al., Present-day geodynamics of the circum-Adriatic region: an overview, J. Geodyn., 2011, vol. 51, pp. 81–89.CrossRefGoogle Scholar
  24. Pizzi, A., Falcucci, E., Gori, S., Galadini, F., Messina, F., Di Vincenzo, M., Esestime, P., Giaccio, B., and Sposato, A., Faglie attive nell’area del massiccio della Maiella (Appennino Abruzzese, Italia Centrale), Extended Abstracts of the 25th GNGTS National Congress, Rome, 2006, pp. 32–33.Google Scholar
  25. Richter, C.F., Elementary Seismology, San Francisco: Freeman, 1958.Google Scholar
  26. Rogozhin, E.A., Lutikov, A.I., Sobisevich, L.E., and Shen, To, and Kanonidi, K.Kh., The Gorkha earthquake of April 25, 2015 in Nepal: tectonic position, aftershock process, and possibilities of forecasting the evolution of seismic situation, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 534–549.CrossRefGoogle Scholar
  27. Scholz, C.H., The frequency magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 1968, vol. 58, no. 1, pp. 399–415.Google Scholar
  28. Schorlemmer, D., and S. Wiemer, Microseismicity data forecast rupture area, Nature, 2005, vol. 434, p. 1086.CrossRefGoogle Scholar
  29. Schorlemmer, D., Wiemer, S., and Wyss, M., Variations in earthquake-size distribution across different stress regimes, Nature, 2005, vol. 437, pp. 539–542.CrossRefGoogle Scholar
  30. Scrocca, D., Doglioni, C., and Innocenti, F., Constraints for an interpretation of the Italian geodynamics: A review, Mem. Descr. Carta Geol. d’It., 2003, vol. LXII, pp. 15–46.Google Scholar
  31. Spada, M., Bianchi, I., Kissling, E., Agostinetti, N.P., and Wiemer, S., Combining controlled-source seismology and receiver function information to derive 3D Moho topography for Italy, Geophys. J. Int., 2013, vol. 194, no. 2, pp. 1050–1068.CrossRefGoogle Scholar
  32. Vittory, E., Deiana, G., Esposito, E., Ferreli, L., Marchegiani, L., Mastrolorenzo, G., Michetti, A.M., Porfido, S., Serva, L., Simonelli, A.L., and Tondi, E., Ground effects and surface faulting in the September–October, 1997 Umbria-Marche (Central Italy) seismic sequence, J. Geodyn., 2000, vol. 29, nos. 3–4, pp.535–564.CrossRefGoogle Scholar
  33. Wells, D.L. and Coppersmith, K.J., New empirical relationships among magnitude, rupture length rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 4, pp. 974–1002.Google Scholar
  34. Wiemer, S. and Schorlemmer, L.M., An asperity-based likelihood model for California, Seismol. Res. Lett., 2007, vol. 78, no. 1, pp. 134–140.CrossRefGoogle Scholar
  35. Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of Studying the Seismotectonic Deformations), Moscow: Nauka, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Lutikov
    • 1
    • 2
  • E. A. Rogozhin
    • 1
  • G. Yu. Dontsova
    • 2
  • M. S. Kuchai
    • 1
    • 2
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Federal Research Center, Geophysical SurveyRussian Academy of SciencesObninskRussia

Personalised recommendations