Blood Plasma Lipidome: Opportunities in the Early Diagnostics of Preeclampsia


Blood plasma lipidome analysis is a mass spectrometric (MS) evaluation of molecular types of lipids, sometimes in combination with high performance liquid chromatography (HPLC). Its importance is increasing in studies aimed at identifying new informative biomarkers of diseases. The review summarizes the studies of the application of this approach to preeclampsia (PE), which is a not so rare (nearly 5%) pregnancy abnormality that often results in maternal and fetal mortality. The absence of both timely detectable biomarkers and a clear understanding of its pathogenesis determines the active research in this area. The results of lipidomic studies of PE patients, in which the differences in the levels of individual molecular types of lipids were detected, are presented here. Various studies have described the increased levels of various lipids in PE plasma: a few ceramides types and several individual phospholipids (phosphatidylglycerols, oxidized phosphatidylcholine, lysophosphatidylcholine with C14:0). Two independent studies of PE plasma have shown an increase in phosphatidylserine and diglycerides, as well as sphingosine phosphate. Differences in the dynamics of change of sphingomyeline level are reported, particularly with C16:0 that was decreased in the first pregnancy trimester and subsequently increased in PE patients only. The development of standard conditions for MS analysis, such as sample preparation, ionization conditions, and ion detection modes, will, in combination with other metabolomics approaches, provide additional information on the PE pathogenesis, and probably identify new informative biomarkers.

This is a preview of subscription content, log in to check access.

Fig. 1.


  1. 1

    Ghulmiyyah, L. and Sibai, B., Semin. Perinatol., 2012, vol. 36, no. 1, pp. 56–59.

    Article  Google Scholar 

  2. 2

    Shalina, R.I., Mikhaleva, L.M., Simukhina, M.A., Konoplyannikov, A.G., Shtabnitskii, A.M., and Simukhina, M.A., Vopr. Ginekol. Akush. Perinatol., 2017, vol. 16, no. 6, pp. 16–23.

    Article  Google Scholar 

  3. 3

    Burton, G.J., Charnock-Jones, D.S., and Jauniaux, E., Reproduction, 2009, vol. 138, no. 6, pp. 895–902.

    CAS  Article  Google Scholar 

  4. 4

    De Kat, A.C., Hirst, J., Woodward, M., Kennedy, S., and Peters, S.A., Pregnancy Hypertens., 2019, vol. 16, pp. 48–66.

    Article  Google Scholar 

  5. 5

    Wojcik-Baszko, D., Charkiewicz, K., and Laudanski, P., Prostaglandins Other Lipid Mediat., 2018, vol. 139, pp. 19–23.

    CAS  Article  Google Scholar 

  6. 6

    Anand, S ., Young, S., Esplin, M., Peaden, B., Tolley, H.D., Porter, T.F., Varner, M.W., D’Alton, M.E., Jackson, B.J., and Graves, S.W., J. Lipid Res., 2016, vol. 57, pp. 687–696.

    CAS  Article  Google Scholar 

  7. 7

    Paré, E., Parry, S., McElrath, T.F., Pucci, D., Newton, A., and Lim, K.H., Obstet. Gynecol., 2014, vol. 124, no. 4, pp. 763–770.

    Article  Google Scholar 

  8. 8

    Bodnar, L.M., Ness, R.B., Markovic, N., and Roberts, J.M., Ann. Epidemiol., 2005, vol. 15, no. 7, pp. 475–482.

    Article  Google Scholar 

  9. 9

    Frederick, O., Rudra, C.B., Miller, R.S., Foster, J.C., and Williams, M.A., Epidemiology, 2006, vol. 17, no. 4, pp. 428–434.

    Article  Google Scholar 

  10. 10

    Torkhovskaya, T.I., Zakharova, T.S., Korotkevich, E.I., Ipatova, O.M., and Markin, S.S., Russ. J. Bioorg. Chem., vol. 45, no. 5, pp. 335–346.

  11. 11

    Quehenberger, O. and Dennis, E.A., N. Engl. J. Med., 2011, vol. 365, no. 19, pp. 1812–1823.

    CAS  Article  Google Scholar 

  12. 12

    Lokhov, P.G., Maslov, D.L., Balashova, E.E., Trifonova, O.P., Medvedeva, N.V., Torkhovskaya, T.I., Ipatova, O.M., Archakov, A.I., Malyshev, P.P., Kukharchuk, V.V., Shestakova, E.A., Shestakova, M.V., and Dedo,v, I.I., Biomed. Khim., 2015, vol. 61, no. 1, pp. 7–18.

    CAS  Article  Google Scholar 

  13. 13

    Wang, J., Wang, C., and Han, X., Anal. Chim. Acta, 2019, vol. 1061, pp. 28–41.

    CAS  Article  Google Scholar 

  14. 14

    Kenny, L.C., Broadhurst, D.I., Dunn, W., Brown, M., North, R.A., McCowan, L., Roberts, C., Cooper, G.J., Kell, D.B., and Baker, P.N., Hypertension, 2010, vol. 56, pp. 741–749.

    CAS  Article  Google Scholar 

  15. 15

    Li, N. and Zhang, F., Front. Biosci. (Landmark Ed.), 2016, vol. 21, pp. 1296–1313.

  16. 16

    Chen, T., He, P., Tan, Y., and Xu, D., Biochem. Biophys. Res. Commun., 2017, vol. 485, no. 1, pp. 119–125.

    CAS  Article  Google Scholar 

  17. 17

    De Oliveira, L., Camara, N.O., Bonetti, T., Lo Turco, E.G, Bertolla, R.P, Moron, A.F., Sass, N., and Da Silva, I.D., Clin. Biochem., 2012, vol. 45, pp. 852–855.

    CAS  Article  Google Scholar 

  18. 18

    Hyötyläinen, T. and Orešič, M., Anal. Bioanal. Chem., 2015, vol. 407, no. 17, pp. 4973–4993.

    Article  Google Scholar 

  19. 19

    Blood Lipids and Lipoproteins: Quantitation, Composition, and Metabolism, Nelson, G.J., Ed., New York: Wiley-Interscience, 1972.

    Google Scholar 

  20. 20

    Korkes, H.A., Sass, N., Moron, A.F., Câmara, N.O., Bonetti, T., Cerdeira, A.S., Da Silva, I.D., and De Oliveira, L., PLoS One, 2014, vol. 9, no. 10, e110747.

    Article  Google Scholar 

  21. 21

    Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu, T., Spener, F., van Meer, G., Wakelam, M.J., and Dennis, E.A., J. Lipid Res., 2009, vol. 50 (suppl.), pp. S9–S14.

    Article  Google Scholar 

  22. 22

    Markin, S.M. Ol’binskaya, L.I., and Torkhovskaya, T.I., Fosfolipidnaya terapiya ateroskleroza (Phospholipid Therapy of Atherosclerosis), Moscow: Belyi Veter, 2016.

    Google Scholar 

  23. 23

    Alesenko, A.V., Lebedev, A.T., and Kurochkin, I.N., Biomed. Khim., 2018, vol. 64, no. 6, pp. 487–495.

    Article  Google Scholar 

  24. 24

    Jarvie, E., Hauguel-de-Mouzon, S., Nelson, S.M., Sattar, N., Catalano, P.M., and Freeman, D.J., Clin. Sci. (London), 2010, vol. 119, no. 3, pp. 123–129.

    CAS  Article  Google Scholar 

  25. 25

    Clausen, T., Djurovic, S., and Henriksen, T., BJOG, 2001, vol. 108, no. 10, pp. 1081–1087.

    CAS  PubMed  Google Scholar 

  26. 26

    Charkiewicz, K., Goscik, J., Blachnio-Zabielska, A., Raba, G., Sakowicz, A., Kalinka, J., Chabowski, A., and Laudanski, P., PLoS One, 2017, vol. 12, no. 5, e0177601.

    Article  Google Scholar 

  27. 27

    Dobierzewska, A., Soman, S., Illanes, S.E., and Morris, A.J., PLoS One, 2017, vol. 12, no. 4, e0175118.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. I. Torkhovskaya.

Ethics declarations


The work was performed in frames of the Program for Fundamental Scientific Research of the State Academies of Sciecnes, 2013–2020.


This article does not contain any research involving humans and animals as research objects.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Shipounova

Abbreviations: HPLC, high performance liquid chromatography; PE, preeclasmpsia; FA, fatty acids residues.

Corresponding author: e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torkhovskaya, T.I., Zakharova, T.S., Korotkevich, E.I. et al. Blood Plasma Lipidome: Opportunities in the Early Diagnostics of Preeclampsia. Russ J Bioorg Chem 46, 280–286 (2020).

Download citation


  • lipidomics
  • lipid molecular types
  • biomarkers
  • plasma lipid classes
  • preeclampsia