Molecular Mechanisms of Raft Organization in Biological Membranes

Abstract

This review analyzes and summarizes some actual models of raft organization as dynamic structural units in lipid membranes emphasizing the discrimination between mechanisms influencing raft nanodomain formation and maintenance in biological and model membranes on one hand and the roles of membrane proteins on the other. The contentious issue of specific input of cholesterol recognizing/interacting amino acid consensus (CRAC) motifs in the membrane rafts and protein interaction mechanism at the molecular level is discussed in detail. Especially, lipid membrane raft-like structure of some enveloped viruses is considered as a manifest example demonstrating the basic organization of raft-type membranes.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1

    Singer, S.J. and Nicolson, G.L., Science, 1972, vol. 175, pp. 720–731.

    CAS  PubMed  Google Scholar 

  2. 2

    Simons, K. and Van Meer, G., Biochemistry, 1988, vol. 27, pp. 6197–6202.

    CAS  PubMed  Google Scholar 

  3. 3

    Simons, K. and Ikonen, E., Nature, 1997, vol. 387, pp. 569–572.

    CAS  PubMed  Google Scholar 

  4. 4

    Simons, K. and Toomre, D., Mol. Cell. Biol., 2000, vol. 1, pp. 31–39.

    CAS  Google Scholar 

  5. 5

    Bigay, J. and Antonny, B., Dev. Cell, 2012, vol. 23, pp. 886–895.

    CAS  PubMed  Google Scholar 

  6. 6

    Lingwood, D. and Simons, K., Science, 2010, vol. 327, pp. 46–50.

    CAS  PubMed  Google Scholar 

  7. 7

    Quinn, P.J., Progr. Lipid Res., 2012, vol. 51, pp. 179–198.

    CAS  Google Scholar 

  8. 8

    Pare, C. and Lafleur, M., Biophys. J., 1998, vol. 74, pp. 899–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Marsh, D., Biochim. Biophys. Acta, 2008, vol. 1778, pp. 1545–1575.

    CAS  PubMed  Google Scholar 

  10. 10

    Boulo, S., Akarsu, H., Ruigrok, R.W.H., and Baudin, F., Virus Res., 2007, vol. 124, pp. 12–21.

    CAS  PubMed  Google Scholar 

  11. 11

    Mollinedo, F. and Gajate, C., Adv. Biol. Regul., 2015, vol. 57, pp. 130–146.

    CAS  PubMed  Google Scholar 

  12. 12

    Devaux, P.F. and Morris, R., Traffic, 2004, vol. 5, pp. 241–246.

    CAS  PubMed  Google Scholar 

  13. 13

    Lorent, J.H. and Levental, I., Chem. Phys. Lipids, 2015, vol. 192, pp. 23–32.

    CAS  PubMed  Google Scholar 

  14. 14

    Stone, M.B., Shelby, S.A., Nunez, M.F., Wisser, K., and Veatch, S.L., eLife, 2017, vol. 6.

  15. 15

    Gerl, M.J., Sampaio, J.L., Urban, S., Kalvodova, L., Verbavatz, J.-M., Binnington, B., Lindemann, D., Lingwood, C.A., Shevchenko, A., Schroeder, C., and Simons, K., J. Cell Biol., 2012, vol. 196, pp. 213–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Brügger, B., Grass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., and Kräusslich, H.-G., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 2641–2646.

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Radyukhin, V.A., Dadinova, L.A., Orlov, I.A., and Baratova, L.A., J. Biomol. Struct. Dynam., 2018, vol. 36, pp. 1351–1359.

    CAS  Google Scholar 

  18. 18

    Brown, D.A. and Rose, J.K., Cell, 1992, vol. 68, pp. 533–544.

    CAS  PubMed  Google Scholar 

  19. 19

    Hattersley, K.J., Hein, L.K., and Fuller, M., Biochem. Biophys. Res. Commun., 2013, vol. 442, pp. 62–67.

    CAS  PubMed  Google Scholar 

  20. 20

    Gowrishankar, K., Ghosh, S., Saha, S.C.R., Mayor, S., and Rao, M., Cell, 2012, vol. 149, pp. 1353–1367.

    CAS  PubMed  Google Scholar 

  21. 21

    Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., Leutenegger, M., Polyakova, S., Belov, V.N., Hell, S.W., and Eggeling, C., Biophys. J., 2011, vol. 101, pp. 1651–1660.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Fujiwara, T.K., Iwasawa, K., Kalay, Z., Tsunoyama, T.A., Watanabe, Y., Umemura, H., Murakoshi, Y.M., Suzuki, K.G., Nemoto, Y.L., Morone, N., and Kusumi, A., Mol. Biol. Cell, 2016, vol. 27, pp. 1101–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Lenne, P.F., Wawreziniek, L., Conchonaud, F., Wurtz, O., Boned, A., Guo, X.J., Rigneault, H., He, H.T., and Marguet, D., EMBO J., 2006, vol. 25, pp. 3245–3256.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Frisz, J.F., Kaiyan, Lou., Klitzing, H.A., Hanafin, W.P., Lizunov, V., Wilson, R.L., Carpenter, K.J., Kim, R., Hutcheon, I.D., Zimmerberg, J., Weber, P.K., and Kraft, M.L., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 2701–2702.

    CAS  Google Scholar 

  25. 25

    Frisz, J.F., Klitzing, H.A., Lou, K., Hutcheon, I.D., Weber, P.K., Zimmerberg, J., and Kraft, M.L., J. Biol. Chem., 2013, vol. 288, pp. 16 855–16 861.

    Google Scholar 

  26. 26

    Heftberger, P., Kollmitzer, B., Rieder, A.A., Amenitsch, H., and Pabst, G., Biophys. J., 2015, vol. 108, pp. 854–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Garner, A.E., Smith, D.A., and Hooper, N.M., Mol. Mem. Biol., 2007, vol. 4, pp. 233–242.

    Google Scholar 

  28. 28

    Courtney, K.C., Pezeshkian, W., Raghupathy, R., Zhang, C., Darbyson, A., Ipsen, J.H., Ford, D.A., Khandelia, H., Presley, J.F., and Zha, X., Cell Rep., 2018, vol. 24, pp. 1037–1049.

    CAS  PubMed  Google Scholar 

  29. 29

    Solanko, L.M., Sullivan, D.P., Sere,|Y.Y., Szomek, M., Lunding, A., Solanko, K.A., Pizovic, A., Stanchev, L.D., Pomorski, T.G., Menon, A.K., and Wüstner, D., Traffic, 2018, vol. 19, pp. 198–214.

    CAS  PubMed  Google Scholar 

  30. 30

    Van Meer, G., Cold Spring Harbor Perspect. Biol., 2011, vol. 3, a004671.

    Google Scholar 

  31. 31

    Fairn, G.D., Schieber, N.L., Ariotti, N., Murphy, S., Kuerschner, L., Webb, R.I., Grinstein, S., and Parton, R.G., J. Cell Biol., 2011, vol. 194, pp. 257–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Daly, T.A., Minghui, Wang., and Regen, S.L., Langmuir, 2011, vol. 27, pp. 2159–2161.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Rog, T. and Vattulainen, I., Chem. Phys. Lipids, 2014, vol. 184, pp. 82–104.

    CAS  PubMed  Google Scholar 

  34. 34

    Litz, J.P., Thakkar, N., Portet, T., and Keller, S.L., Biophys. J., 2016, vol. 110, pp. 635–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sung-Tae, Yang., Kreutzberger, A.J.B., Jinwoo, Lee., Kiessling, V., and Tamm, L.K., Chem. Phys. Lipids, 2016, vol. 199, pp. 136–143.

  36. 36

    Langea, Y. and Steck, T.L., Chem. Phys. Lipids, 2016, vol. 199, pp. 74–93.

    Google Scholar 

  37. 37

    Marquardt, D., Kucerka, N., Wassall, S.R., Harrounf, T.A., and Katsaras, J., Chem. Phys. Lipids, 2016, vol. 199, pp. 17–25.

    CAS  PubMed  Google Scholar 

  38. 38

    Mingjun, Cai., Weidong, Zhao., Xin, Shang., Junguang, Jiang., Hongbin, Ji., Zhiyong, Tang., and Hongda, Wang., Small, 2012, vol. 8, pp. 1243–1250.

    Google Scholar 

  39. 39

    Yilmaz, N., Yamada, T., Greimel, P., Uchihashi, T., Ando, T., and Kobayashi, T., Biophys. J., 2013, vol. 105, pp. 1397–1405.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Jiang, Y.-W., Guo, H.-Y., Chen, Z., Yu, Z.-W., Wang, Z., and Wu, F.-G., Langmuir, 2016, vol. 32, pp. 6739–6745.

    CAS  PubMed  Google Scholar 

  41. 41

    Radyukhin, V., Fedorova, N., Ksenofontov, A., Serebryakova, M., and Baratova, L., Arch. Virol., vol. 153, pp. 1977–1980.

  42. 42

    Parton, D.L., Tek, A., Baaden, M., and Sansom, M.S.P., PLoS Comput. Biol., 2013, vol. 9, no. 4, e1003034. https://doi.org/10.1371/journal.pcbi.1003034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Laliberte, J.P., McGinnes, L.W., and Morrison, T.G., J. Virol., 2007, vol. 81, pp. 10 636–10 648.

    Google Scholar 

  44. 44

    Ali, A., Avalos, R.T., Ponimashkin, E., and Nayak, D.P., J. Virol., 2000, vol. 74, pp. 8709–8719.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Nyholm, T.K.M., Ozdirekcan, S., and Killian, A., Biochemistry, 2007, vol. 46, pp. 1457–1465.

    CAS  PubMed  Google Scholar 

  46. 46

    Pogozheva, I.D., Mosberg, H.I., and Lomize, A.L., Protein Sci., 2014, vol. 23, pp. 1165–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    De Kruijff, B., Killian, J.A., Ganchev, D.N., Rinia, H.A., and Sparr, E., Biol. Chem., 2006, vol. 387, pp. 235–241.

    CAS  PubMed  Google Scholar 

  48. 48

    Jensen, M.O. and Mouritsen, O.G., Biochim. Biophys. Acta, 2004, vol. 1666, pp. 205–226.

    CAS  PubMed  Google Scholar 

  49. 49

    Kaiser H.-J., Orłowski, A., Rόg, T., Nyholm, T.K.M., Wengang, C., Ten, F., Lingwood, D., Vattulainen, I., and Simons, K., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 16 628–16 633.

    Google Scholar 

  50. 50

    Vidal, A. and McIntosh, T.J., Biophys. J., 2005, vol. 89, pp. 1102–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Sparr, E., Ash, W.L., Nazarov, P.V., Rijkers, D.T., Hemminga, M.A., Tieleman, D.P., and Killian, J.A., J. Biol. Chem., 2005, vol. 280, pp. 39 324–39 331.

    Google Scholar 

  52. 52

    Fastenberg, M.E., Shogomori, H., Xu, X., Brown, D.A., and London, E., Biochemistry, 2003, vol. 42, pp. 12 376–12 390.

    Google Scholar 

  53. 53

    Nicolaus, J., Scolani, S., Bayraktarov, E., Jungnick, N., Engel, S., Pia, Plazzo, A., Stockl, M., Volkmer, R., Veit, M., and Herrmann, A., Biophys. J., 2010, vol. 99, pp. 489–498.

    Google Scholar 

  54. 54

    Nermut, M.V. and Frank, H., J. Gen. Virol., 1971, vol. 1, pp. 37–51.

    Google Scholar 

  55. 55

    Briggs, J.A.G., Wilk, T., and Fuller, S.D., J. Gen. Virol., 2003, vol. 84, pp. 757–768.

    CAS  PubMed  Google Scholar 

  56. 56

    De Planque, M.R.R. and Killian, J.A., Mol. Membr. Biol., 2003, vol. 20, pp. 271–284.

    CAS  PubMed  Google Scholar 

  57. 57

    Hessa, T., Meindl-Beinker, N.M., Bernsel, A., Kim, H., Sato, Y., Lerch-Bader, M., Nillson, I.-M., White, S.H., and Von Heijne, G., Nature, 2007, vol. 450, pp. 1026–1030.

    CAS  PubMed  Google Scholar 

  58. 58

    MacCallum, J.L., Drew Bennett, W.F., and Tieleman, D.P., Biophys. J., 2008, vol. 94, pp. 3393–3404.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Björkbom, A., Róg, T., Kaszuba, K., Kurita, M., Yamaguchi, S., Lönnfors, M., Nyholm, T.K.M., Vattulainen, I., Katsumura, S., and Slotte, J.P., Biophys. J., 2010, vol. 99, pp. 3300–3308.

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Aritz, B., García-Arribas, A.A., and Goñi, F.M., Chem. Phys. Lipids, 2016, vol. 199, pp. 26–34.

    Google Scholar 

  61. 61

    Tsuzuki, S., Struct. Bond., 2005, vol. 115, pp. 149–193.

    CAS  Google Scholar 

  62. 62

    De Jesus, A.J. and Allen, T.W., Biochim. Biophys. Acta, 2013, vol. 1828, pp. 864–876.

    CAS  PubMed  Google Scholar 

  63. 63

    Cedric Graúffel, C., Yang, B., He, T., Roberts, M.F., Gershenson, A., and Reuter, N., J. Am. Chem. Soc., 2013, vol. 135, pp. 5740–5750.

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Luz-Madrigal, A., Asanov, A., Camacho-Zarco, A.R., Sampieri, A., and Vaca, L., J. Virol., 2013, vol. 87, pp. 11 894–11 907.

    Google Scholar 

  65. 65

    MacCallum J. L. and Tieleman, D.P., Trends Biochem. Sci., 2011, vol. 36, pp. 653–662.

    CAS  PubMed  Google Scholar 

  66. 66

    Pogozheva, I., Tristram-Nagle, S., Mosberg, H.I., and Lomize, A.L., Biochim. Biophys. Acta, 2013, vol. 1828, pp. 2592–2608.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Serebryakova, M.V., Kordyukova, L.V., Semashko, T.A., Ksenofontov, A.L., Rudneva, I.A., Kropotkina, E.A., Filippova, I.Yu., Veit, M., and Baratova, L.A., Virus Res., 2011, vol. 160, pp. 294–304.

    CAS  PubMed  Google Scholar 

  68. 68

    Matsumori, N., Yamaguchi, T., Maeta, Y., and Murata, M., Biophys. J., 2015, vol. 108, pp. 2816–2824.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Epand, R.M., Biochim. Biophys. Acta, 2008, vol. 1778, pp. 1576–1582.

    CAS  PubMed  Google Scholar 

  70. 70

    Epand, R.F., Thomas, A., Brasseur, R., Vishwanathan, S.A., Hunter, E., and Epand, R.M., Biochemistry, 2006, vol. 45, pp. 6105–6114.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Li, H. and Papadopoulos, V., Endocrinology, 1998, vol. 139, pp. 4991–4997.

    CAS  PubMed  Google Scholar 

  72. 72

    Vincenta, N., Genina, C., and Malvoisin, E., Biochim. Biophys. Acta, 2002, vol. 1567, pp. 157–164.

    Google Scholar 

  73. 73

    Shenstone, Huang., Green, B., Thompson, M., Chen, R., Thomaston, J., De Grado, W.F., and Howard, K.P., Protein Sci., 2015, vol. 24, pp. 426–429.

    Google Scholar 

  74. 74

    Dunina-Barkovskaya, A., in Protein Interactions, Cai, J. and Wang, R.E., Eds., Croatia: InTech Publ., 2010, pp. 275–290.

    Google Scholar 

  75. 75

    De Vries, M., Herrmann, A., and Veit, M., Biochem. J., 2015, vol. 465, pp. 305–314.

    CAS  PubMed  Google Scholar 

  76. 76

    Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., and Stevens, R.C., Structure, 2008, vol. 16, pp. 897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Tsfasman, T., Kost, V., Markushin, S., Lotte, V., Koptiaeva, I., Bogacheva, E., Baratova, L., and Radyukhin, V., Virus Res., 2015, vol. 210, pp. 114–118.

    CAS  PubMed  Google Scholar 

  78. 78

    Harris, A., Cardone, G., Winkler, D.C., Heymann, J.B., Brecher, M., White, J.M., and Steven, A.C., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 19 123– 19 127.

    Google Scholar 

  79. 79

    Battisti, A., Geng Menga, J., Winklerb, D.C., McGinnesc, L.W., Plevka, P., Steven, A.C., Morrisonc, T.G., and Rossmann, M.G., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 13 996–13 996.

    Google Scholar 

  80. 80

    Nayak, D.P., Hui, E.K.-W., and Barman, S., Virus Res., 2004, vol. 106, pp. 147–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Steck, T.L. and Lange, Y., Trends Cell Biol., 2010, vol. 20, pp. 680–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Lange, Y. and Steck, T.L., Chem. Phys. Lipids, 2016, vol. 199, pp. 74–93.

    CAS  PubMed  Google Scholar 

  83. 83

    Schroeder, C., Cholesterol binding and cholesterol transport proteins, in Subcellular Biochemistry, Harris, J.B, Ed., Springer Science+Business Media B. V., 2010, vol. 51, pp. 77–108.

  84. 84

    Calder, L.J., Wasilewski, S., Berriman, J.A., and Rosenthal, P.B., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 10 685–10 690.

    Google Scholar 

  85. 85

    Guofeng, Cheng., Montero, A., Gastaminza, P., Whitten-Bauer, C., Stefan, F., Wieland, S.F., Isogawa, M., Fredericksen, B., Selvarajah, S., Gallay, P.A., Ghadiri, M.R., and Chisari, F.V., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 3088–3093.

    Google Scholar 

  86. 86

    Hanson, J.M., Gettel, D.L., Tabaei, S.R., Jackman, J., Min Chul Kim, Sasaki, D.Y., Groves, J.T., Liedberg, B., Nam-Joon Cho, and Parikh, A.N., Biophys. J., 2016, vol. 110, pp. 176–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Eiríksdóttir, E., Konate, K., Langel, Ü., Divita, G., and Deshayes, S., Biochim. Biophys. Acta, 2010, vol. 1798, pp. 1119–1128.

    PubMed  Google Scholar 

  88. 88

    Bechara, C. and Sagan, S., FEBS Lett., 2013, vol. 587, pp. 1693–1702.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 16-04-00563 and 18-04-01363).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Radyukhin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans and animals as research objects.

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: CRAC, cholesterol-recognizing/interacting amino acid consensus.

Corresponding authors: phone: +7 (495) 939-54-08; fax: +7 (495) 939-31-81; e-mail: varvic@belozersky.msu.ru.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radyukhin, V.A., Baratova, L.A. Molecular Mechanisms of Raft Organization in Biological Membranes. Russ J Bioorg Chem 46, 269–279 (2020). https://doi.org/10.1134/S1068162020030164

Download citation

Keywords:

  • lipid membranes
  • rafts
  • membrane proteins
  • cholesterol-recognizing amino acid consensus (CRAC) motifs
  • amphipathic elements of the secondary structure of proteins