Design, Synthesis, Molecular Docking Studies, and Biological Evaluation of Pyrazoline Incorporated Isoxazole Derivatives


A novel series of pyrazoline incorporated isoxazole derivatives were designed and synthesized. The synthesized compounds were characterized by 1H NMR, IR and ESI-MS spectra. In addition, all the synthesized compounds were docked with the target human DHFR (PDB ID: 1KMS). Among all the compounds, compound 5-(4-methoxyphenyl)-3-(5-methyl-3-(4-nitrophenyl)isoxazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone proved to be the most potent exhibiting the highest binding affinity with a docking score of 153.763. All the synthesized compounds were screened for anticancer activity against human breast cancer cell lines MCF-7 and MDA-MB-231 through MTT assay. Out of all the synthesized compounds (5-(4-methoxyphenyl)-3-(5-methyl-3-(4-nitrophenyl)isoxazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone posses good activity with IC50 values ranging from 3–4 μg/mL. Further all the compounds were screened for antitubercular assay against the strain H37Rv and multidrug resistant strain DKU 156, among all four compounds exhibited significant activity at 6.25 µg/mL concentrations. Thus the MIC value may be in between the range of 3.12 and 6.25 µg/mL.

This is a preview of subscription content, log in to check access.

Fig. 1.


  1. 1

    GBD 2015, 1980–2015: A systematic analysis for the Global Burden of Disease study 2015, Lancet, 2016, vol. 388, pp. 1459–544.

  2. 2

    Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S., Cancers, 2014, vol. 6, no. 3, pp. 1769–179.

    CAS  Article  Google Scholar 

  3. 3

    Sysak, A. and Obmińska-Mrukowicz, B., Eur. J. Med. Chem., 2017, vol. 137, pp. 292–309.

    CAS  Article  Google Scholar 

  4. 4

    Dadmal, T.L., Appalanaidu, K., Kumbhare, R.M., et al., New J. Chem., 2018, vol. 42, no. 19, pp. 15 546–15 551.

    Article  Google Scholar 

  5. 5

    Sherifa, M., Abu Bakr, Somaia, S., et al., Res. Chem. Int., 2016, vol. 42, pp. 1387–1399.

    Article  Google Scholar 

  6. 6

    Srinivas Burra,Vani Voora, Ch., Prasad Rao, et al., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 4314–4318.

    CAS  Article  Google Scholar 

  7. 7

    Yong, J.P. Lu, C.Z., and Wu, X., Anti-Cancer Agent.Med. Chem., 2015, vol. 15, no. 1, pp. 131–136.

    CAS  Google Scholar 

  8. 8

    Ahmed Kamal, Surendranadha Reddy, J., Janaki Ramaiah, M., et al., Eur. J. Med. Chem., 2010, vol. 45, pp. 3924–3937.

    CAS  Article  Google Scholar 

  9. 9

    Basha, S.S., Divya, K., Padmaja, et al., Res. Chem. Int., 2015, vol. 41, no. 12, pp. 10 067–10 083.

    Article  Google Scholar 

  10. 10

    Panda, S.S., Chowdary, P.R., and Jayashree, B.S., Ind. J. Pharm. Sci., 2009, vol. 71, no. 6, p. 684.

    CAS  Article  Google Scholar 

  11. 11

    Radhika Tumma, Harinadha Babu Vamaraju, Madhava Reddy Bommineni, et al., J. Pharm. Res., 2017, vol. 11, no. 7, pp. 895–902.

    CAS  Google Scholar 

  12. 12

    Yang, Z., Li, P., and Gan, X., Molecules, 2018, vol. 23, no. 7, p. 1798.

    Article  Google Scholar 

  13. 13

    Faria, J.V., Vegi, P.F., Miguita, A.G., et al., Bioorg. Med. Chem., 2017, vol. 25, no. 21, pp. 5891–5903.

    CAS  Article  Google Scholar 

  14. 14

    Naim, M.J., Alam, O., and Farah Nawaz, M., J. Pharm. Biol. Sci., 2016, vol. 8, no. 1, p. 2.

    CAS  Google Scholar 

  15. 15

    Karrouchi, K., Radi, S., Ramli, Y., et al., Molecules, 2018, vol. 23, no. 1, p. 134.

    Article  Google Scholar 

  16. 16

    Balbi, A., Anzaldi, M., Macciò, C., et al., Eur. J. Med. Chem., 2011, vol. 46, no. 11, pp. 5293–5309.

    CAS  Article  Google Scholar 

  17. 17

    Sondhi, S.M., Kumar, S., Kumar, N., et al.,Med. Chem. Res., 2012, vol, 21, no. 10, pp. 3043–3052.

    CAS  Article  Google Scholar 

  18. 18

    Kumari, S., Paliwal, S., and Chauhan, R., Synth. Comm., 2014, vol. 44, no. 11, pp. 1521–1578.

    CAS  Article  Google Scholar 

  19. 19

    Balbi, A., Anzaldi, M., Macciò, C., et al., Eur. J. Med. Chem., 2011, vol. 46, no. 11, pp. 5293–309.

    CAS  Article  Google Scholar 

  20. 20

    Ansari, A., Ali, A., and Asif, M., New J. Chem., 2017, vol. 41, no. 1, pp. 16–41.

    CAS  Article  Google Scholar 

  21. 21

    Ahmad, A, Husain, A, Khan, S.A., and Bhandari, A., J. Saudi Chem. Soc., 2016, vol. 20, no. 5, pp. 577–584.

    CAS  Article  Google Scholar 

  22. 22

    Ali, M.A., Yar, M.S., Kumar, M., and Pandian, G.S., Nat. Prod. Res., 2007, vol. 21, no. 7, pp. 575–579.

    CAS  Article  Google Scholar 

  23. 23

    Azzali, E., Machado, D., Kaushik, A., Vacondio, F., Flisi, S., Cabassi, C.S., Lamichhane, G., et al., J. Med. Chem., 2017, vol. 60, no. 16, pp. 7108–7122.

    CAS  Article  Google Scholar 

  24. 24

    Wan, M., Xu, L., Hua, L., Li, A., Li, S., Lu, W., Pang, Y., Cao, C., Liu, X. and Jiao, P., Bioorg. Chem., 2014, vol. 54, pp. 38–43.

    CAS  Article  Google Scholar 

Download references


The authors are thankful to G. Pulla reddy college of Pharmacy and Osmania University.

Author information



Corresponding author

Correspondence to T. Radhika.

Ethics declarations

This article doesnot contain any studies involving human participants performed by any of the authors and doesnot contain any studies involving animals performed by any of the author.

Conflict of Interests. The authors report no conflicts of interest.

Additional information

Corresponding author: e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radhika, T., Vijay, A., Harinadha, B.V. et al. Design, Synthesis, Molecular Docking Studies, and Biological Evaluation of Pyrazoline Incorporated Isoxazole Derivatives. Russ J Bioorg Chem 46, 429–437 (2020).

Download citation


  • anticancer
  • binding affinity
  • docking
  • isoxazole
  • pyrazoles
  • antitubercular