Synthesis of Some New Pyrazoline-Based Thiazole Derivatives and Evaluation of Their Antimicrobial, Antifungal, and Anticancer Activities


3-(2-Thienyl)-5-aryl-1-thiocarbamoyl-2-pyrazolines were reacted with chloroacetone derivatives and hydrazonyl chloride derivatives in ethanol to afford the corresponding thiazolylpyrazoline derivatives and thiophenylpyrazolyl-5-substituted aryl-diazenylthiazole derivatives, respectively. The structures of the newly synthesized compounds were elucidated by different elemental and spectral analyses (IR, mass, 1H and 13C NMR). The antimicrobial and antifungal activities of the newly synthesized compounds were evaluated against four bacterial species and five fungal strains. In addition, the antitumor activities of two of the newly synthesized compounds 1-(2-(5-(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydropyrazol-1-yl)-4-methyl thiazol-5-yl)ethan-1-one and 2-(5-(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methyl-5-(phenyl-diazenyl)thiazole against HEPG-2, HCT-116, MCF-7, BHK, and CACO-2 were evaluated. From the obtained results, we found that these two compounds were the most potent candidates towards all gram-positive and gram-negative bacteria, as well as the fungi studied. Also, the same two compounds showed strong antitumor activities against two of the tumor cell lines (HCT-116 and CACO-2).

This is a preview of subscription content, log in to check access.


  1. 1

    Fustero, S., Sánchez-Roselló, M., Barrio, P., and Simón-Fuentes, A., Chem. Rev., 2011, vol. 111, pp. 6984–7034.

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Ansari, A., Ali, A. and Asif, M., New J. Chem., 2017, vol. 41, pp. 16–41.

    CAS  Article  Google Scholar 

  3. 3

    Kumar, S., Bawa, S., Drabu, S., Kumar, R., and Gupta, H., Recent Pat. Anti-Infect. Drug Discov., 2009, vol. 4, pp. 154–163.

    CAS  Article  Google Scholar 

  4. 4

    Shaaban, M.R., Mayhoub, A.S., and Farag, A.M., Expert Opin. Ther. Pat., 2012, vol. 22, pp. 253–291.

    CAS  Article  Google Scholar 

  5. 5

    Marella, A., Ali, R., Alam, T., Saha, R., Tanwar, O., Akhter, M., Shaquiquzzaman, M., and Alam, M.M., Mini-Rev. Med. Chem., 2013, vol. 13, pp. 921–931.

    CAS  Article  Google Scholar 

  6. 6

    Alex, J.M. and Kumar, R., J. Enzyme Inhib. Med. Chem., 2014, vol. 29, pp. 427–442.

    CAS  Article  Google Scholar 

  7. 7

    Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A., and Lesyk, R., Eur. J. Med. Chem., 2009, vol. 44, pp. 1396–1404.

    CAS  Article  Google Scholar 

  8. 8

    Shaharyar, M., Abdullah, M.M., Bakht, M.A., and Majeed, J., Eur. J. Med. Chem., 2010, vol. 45, pp. 114–119.

    CAS  Article  Google Scholar 

  9. 9

    Congiu, C., Onnis, V., Vesci, L., Castorina, M., and Pisano, C., Bioorg. Med. Chem., 2010, vol. 18, pp. 6238–6248.

    CAS  Article  Google Scholar 

  10. 10

    Al-Abdullah, E.S., Molecules, 2011, vol. 16, p. 3410–3419.

    CAS  Article  Google Scholar 

  11. 11

    Bano, S., Javed, K., Ahmad, S., Rathish, I.G., Singh, S., and Alam, M.S., Eur. J. Med. Chem., 2011, vol. 46, pp. 5763–5768.

    CAS  Article  Google Scholar 

  12. 12

    Bashir, R., Ovais, S., Yaseen, S., Hamid, H., Alam, M.S., Samim, M., Singh, S., and Javed, K., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 4301–4305.

    CAS  Article  Google Scholar 

  13. 13

    Amin, K.M., Eissa, A.A.M., Abou-Seri, S.M., Awadallah, F.M., and Hassan, G.S., Eur. J. Med. Chem., 2013, vol. 60, pp. 187–198.

    CAS  Article  Google Scholar 

  14. 14

    Montoya, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., and Insuasty, B., Molecules, 2014, vol. 19, pp. 18 656–18 675.

    CAS  Article  Google Scholar 

  15. 15

    Insuasty, B., Montoya, A., Becerra, D., Quiroga, J., Abonia, R., Robledo, S., Darío Vélez, I., Upegui, Y., Nogueras, M., and Cobo, J., Eur. J. Med. Chem., 2013, vol. 67, pp. 252–262.

    CAS  Article  Google Scholar 

  16. 16

    Rathore, P., Yaseen, S., Ovais, S., Bashir, R., Yaseen, R., and Hameed, A.D., Samim, M., Gupta, R., Hussain, F., and Javed, K., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 1685–1691.

    CAS  Article  Google Scholar 

  17. 17

    Lv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P., and Zhu, H.-L., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 5374–5377.

    CAS  Article  Google Scholar 

  18. 18

    Shin, S.Y., Yoon, H., Hwang, D.; Ahn, S., Kim, D.-W., Koh, D., Lee, Y.H., and Lim, Y., Bioorg. Med. Chem., 2013, vol. 21, pp. 7018–7024.

    CAS  Article  Google Scholar 

  19. 19

    Yu, M., Yang, H., Wu, K., Ji, Y., Ju, L., and Lu, X., Bioorg. Med. Chem., 2014, vol. 22, pp. 4109–4118.

    CAS  Article  Google Scholar 

  20. 20

    Amin, K.M., Abou-Seri, S.M., Awadallah, F.M., Eissa, A.A.M., Hassan, G.S., and Abdulla, M.M., Eur. J. Med. Chem., 2015, vol. 90, pp. 221–231.

    CAS  Article  Google Scholar 

  21. 21

    Qin, Y.-J., Li, Y.-J., Jiang, A.-Q., Yang, M.-R., Zhu, Q.-Z., Dong, H., and Zhu, H.-L., Eur. J. Med. Chem., 2015, vol. 94, pp. 447–457.

    CAS  Article  Google Scholar 

  22. 22

    Mishra, C.B., Kumari, S., and Tiwari, M., Eur. J. Med. Chem., 2015, vol. 92, pp. 1–34.

    CAS  Article  Google Scholar 

  23. 23

    Ayati, A., Emami, S., Asadipour, A., Shafiee, A., and Foroumadi, A., Eur. J. Med. Chem., 2015, vol. 97, pp. 699–718.

    CAS  Article  Google Scholar 

  24. 24

    Sun, Z.Q., Tu, L.X., Zhuo, F.J., and Liu, S.X., Bioorg. Med. Chem. Lett., 2016, vol. 26, pp. 747–750.

    CAS  Article  Google Scholar 

  25. 25

    D’Ascenzio, M., Chimenti, P., Gidaro, M.C., De Monte, C., De Vita, D., Granese, A., Scipione, L., Di Santo, R., Costa, G., Alcaro, S., Yáñez, M., and Carradori, S., J. Enzyme Inhib. Med. Chem., 2015, vol. 30, pp. 908–919.

    Article  Google Scholar 

  26. 26

    Zala, A.V., Walker, M.M., and Talley N.J., Expert Opin. Emerg. Drugs, 2015, vol. 20, pp. 221–233.

    CAS  Article  Google Scholar 

  27. 27

    Logu, A.D., Sadd, M.I., Cardia, M.C., Borgna, R., Sanna, C., Saddi, B., and Elias, M., J. Antimicrob.Chemother., 2005, vol. 55, pp. 692–698.

    Article  Google Scholar 

  28. 28

    Liu, C.L., Li, Z.M., and Zhong, B., J. Fluorine Chem., 2004, vol. 125, pp. 1287–1290.

    CAS  Article  Google Scholar 

  29. 29

    Kumar, R.V.K. and Kumar, V.S.R.S., J. Heterocycl. Chem., 2005, vol. 42, pp. 1191–1193.

    CAS  Article  Google Scholar 

  30. 30

    D’Andrea, S., Zheng, Z.B., DenBleyker, K., Fung-Tomc, J.C., Yang, H., Clark, J., Taylor, D., and Bronson, J., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 2834–2839.

    Article  Google Scholar 

  31. 31

    Azarifar, D. and Shaebanzadeh, M., Molecules, 2002, vol. 7, pp. 885–895.

    CAS  Article  Google Scholar 

  32. 32

    Matysiak, J. and Niewiadom A.Y., Bioorg. Med. Chem., 2003, vol. 11, pp. 2285–2287.

    CAS  Article  Google Scholar 

  33. 33

    Jungheim, L.N., Sigmund, S.K., and Fisher, J.W., Tetrahedron Lett., 1987, vol. 28, pp. 285–288.

    CAS  Article  Google Scholar 

  34. 34

    Temel, H.E., Altintop, M.D., and Özdemir, A., Turk. J. Pharm. Sci., 2018, vol. 15, pp. 333–338.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Nassar, I.F., Atta-Allah, S.R., and Elgazwy, A-S.S.H., J. Enz. Inhib. Med. Chem., 2015, vol. 30, pp. 396–405.

    CAS  Article  Google Scholar 

  36. 36

    Nassar, I.F., El Farargy, A.F., Abdelrazek, F.M., and Ismail, N.S.M., Nucleosides, Nucleotides Nucleic Acids, 2017, vol. 36, pp. 275–291.

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Nassar, I.F., El Farargy, A.F., and Abdelrazek, F.M., J. Heterocycl. Chem., 2018, vol. 55, pp. 1709–1718.

    CAS  Article  Google Scholar 

  38. 38

    Nassar, I.F., Atta-Allah, S.R., and Hemdan M.M., Phosphorus Sulphur, 2018, vol. 193, pp. 630–636.

    CAS  Article  Google Scholar 

  39. 39

    Nassar, I.F., EL-Kady D.S., Awad H.M., and El-Sayed W.A., J. Heterocycl. Chem., 2019, vol. 56, pp. 1086–1100.

    CAS  Article  Google Scholar 

  40. 40

    Kabli, R.A., Khalaf, A.A., Zimaity, M.T., Khalil, A.M., Kaddah, A.M., and Al-Rifaie, H.A., J. Indian Chem. Soc., 1991, vol. 68, pp. 47–51.

    CAS  Google Scholar 

  41. 41

    Wiley, R.H., Jarboe, C.H., Hayes, F.N., Hansbury, E., Nielsen, J.T., and Callahan, P.X., J. Org. Chem., 1958, Vol. 23, pp. 732–738.

    CAS  Article  Google Scholar 

  42. 42

    Abdel-Kader, H.A. and Seddkey, S.R., Assiut Vet. Med. J., 1995, vol. 34, pp. 67.

    Google Scholar 

  43. 43

    Fagbemi, J., Ferdinand, L., and Adenipekun, T., Afr. J. Biotech., 2009, vol. 8, pp. 1176–1182.

    Google Scholar 

  44. 44

    Skehan, P. and Storeng, R., J. Natl. Cancer Inst., 1990, vol. 82, pp. 1107–1112.

    CAS  Article  Google Scholar 

  45. 45

    Eweiss, N.F. and Osman, A., J. Heterocycl. Chem., 1980, vol. 17, pp. 1713–1717.

Download references

Author information



Corresponding author

Correspondence to Ibrahim F. Nassar.

Ethics declarations


The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

Corresponding author: e-mail: Dr.Ibrahim.Nassar@

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safaa I. Elewa, Mansour, E., Nassar, I.F. et al. Synthesis of Some New Pyrazoline-Based Thiazole Derivatives and Evaluation of Their Antimicrobial, Antifungal, and Anticancer Activities. Russ J Bioorg Chem 46, 382–392 (2020).

Download citation


  • thiophene
  • thiazole
  • pyrazoline
  • antimicrobial
  • antifungal
  • anticancer activity