Theoretical and Practical Aspects of Albumin Esterase Activity


Unlike many other plasma proteins, albumin is barely glycosylated and plays an important role in maintaining the colloidal osmotic blood pressure; it can bind and transport various molecules of endogenous and exogenous origin. Data on the enzymatic activity of albumin have been accumulated, including pseudo-esterase (irreversible binding of the substrate to the protein) and true esterase (binding of the substrate to the active center of the protein with subsequent dissociation of the complex into enzyme and product) activities. In toxicology, the problem of (pseudo)esterase activity of albumin in relation to organophosphates (OPs) is of the greatest interest. This review demonstrates the literature data and the results of our own research on the protein esterase activity. The possibility of targeted modulation of albumin using the molecules capable of affecting its binding and esterase activity is considered. The prospects of practical application of some methods of influence on albumin in toxicology are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1.


  1. 1

    Macwilliam, J.A., Br. Med. J., 1891, vol. 1, pp. 837–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P., IUBMB Life, 2005, vol. 57, pp. 787–796.

    CAS  PubMed  Google Scholar 

  3. 3

    Sudlow, G., Birkett, D.J., and Wade, D.N., Mol. Pharmacol., 1975, vol. 11, pp. 824–832.

    CAS  PubMed  Google Scholar 

  4. 4

    Goncharov, N.V., Belinskaya, D.A., Ukolov, A.I., and Razygraev, A.V., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 113–124.

    CAS  Google Scholar 

  5. 5

    Li, B., Nachon, F., Froment, M.T., Verdier, L., Debouzy, J.C., Brasme, B., Gillon, E., Schopfer, L.M., Lockridge, O., and Masson, P., Chem. Res. Toxicol., 2008, vol. 21, pp. 421–431.

    CAS  PubMed  Google Scholar 

  6. 6

    John, H., Breyer, F., Thumfart, J.O., Höchstetter, H., and Thiermann, H., Anal. Bioanal. Chem., 2010, vol. 398, pp. 2677–2691.

    CAS  PubMed  Google Scholar 

  7. 7

    Sogorb, M.A. and Vilanova, E., Chem. Biol. Interact., 2010, vol. 187, pp. 325–329.

    CAS  PubMed  Google Scholar 

  8. 8

    Goncharov, N.V., Terpilovskii, M.A., Belinskaya, D.A., Shmurak, V.I., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2017, vol. 53, pp. 271–281.

    CAS  Google Scholar 

  9. 9

    Goncharov, N.V., Terpilovsky, M.A., Shmurak, V.I., Belinskaya, D.A., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2019, vol. 55, pp. 112–123.

    CAS  Google Scholar 

  10. 10

    The UniProt Consortium, Nucleic Acids Res., 2015, vol. 43, pp. 204–212.

  11. 11

    Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., Otagiri, M., and Curry, S., J. Mol. Biol., 2005, vol. 353, pp. 38–52.

    CAS  PubMed  Google Scholar 

  12. 12

    Bujacz, A., Acta Crystallogr. D Biol. Crystallogr., 2012, vol. 68, pp. 1278–1289.

    CAS  PubMed  Google Scholar 

  13. 13

    Vyas, V.K., Ukawala, R.D., Ghate, M., and Chintha, C., Indian J. Pharm. Sci., 2012, vol. 74, pp. 1–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Taborskaya, K.I., Belinskaya, D.A., Goncharov, N.V., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2017, vol. 53, pp. 384–393.

    CAS  Google Scholar 

  15. 15

    Luik, A.I. and Luk’yanchuk, V.D., Syvorotochnyi al’bumin i biotransport yadov (Serum Albumin and Biotransport of Poisons), Moscow: Meditsina, 1984.

  16. 16

    Pshenkina, N.N., Ross. Biomed. Zh., 2011, vol. 12, pp. 980–989.

    Google Scholar 

  17. 17

    Dömötör, O., Pelivan, K., Borics, A., Keppler, B.K., Kowol., C.R., and Enyedy, É.A., J. Pharm. Biomed. Anal., 2018, vol. 154, pp. 321–331.

    PubMed  Google Scholar 

  18. 18

    Schenfeld, E.M., Ribone, S.R., and Quevedo, M.A., Eur. J. Pharm. Sci., 2018, vol. 115, pp. 109–118.

    CAS  PubMed  Google Scholar 

  19. 19

    Tang, B., Tang, P., He, J., Yang, H., and Li, H., J. Photochem. Photobiol. B, 2018, vol. 184, pp. 18–26.

    CAS  PubMed  Google Scholar 

  20. 20

    Tildon, J.T. and Ogilvie, J.W., J. Biol. Chem., 1972, vol. 247, pp. 1265–1271.

    CAS  PubMed  Google Scholar 

  21. 21

    Radilov, A., Rembovskiy, V., Rybalchenko, I., Savelieva, E., Podolskaya, E., Babakov, V., Ermolaeva, E., Dulov, S., Kuznetsov, S., Mindukshev, I., Shpak, A., Krasnov, I., Khlebnikova, N., Jenkins, R., and Goncharov, N., in Handbook of the Toxicology of Chemical Warfare Agents, Gupta, R.C., Ed., Amsterdam: Academic Press/Elsevier, 2009, pp. 69–91.

    Google Scholar 

  22. 22

    Gladilovich, V.D., Krasnov, I.A., Podol’skaya, E.P., Dubrovskii, Ya.A., Voitenko, N.G., Fironov, S.V., Babakov, V.N., Goncharov, N.V., and Krasnov, N.V., Nauchn. Priborostr., 2010, vol. 20, pp. 84–92.

    CAS  Google Scholar 

  23. 23

    Sultatos, L.G., Basker, K.M., Shao, M., and Murphy, S.D., Mol. Pharmacol., 1984, vol. 26, pp. 99–104.

    CAS  PubMed  Google Scholar 

  24. 24

    Means, G.E. and Wu, H.L., Arch. Biochem. Biophys., 1979, vol. 194, pp. 526–530.

    CAS  PubMed  Google Scholar 

  25. 25

    Sakurai, Y., Ma, S.F., Watanabe, H., Yamaotsu, N., Hirono, S., Kurono, Y., Kragh-Hansen, U., and Otagiri, M., Pharm. Res., 2004, vol. 21, pp. 285–292.

    CAS  PubMed  Google Scholar 

  26. 26

    Watanabe, H., Tanase, S., Nakajou, K., Maruyama, T., Kragh-Hansen, U., and Otagiri, M., Biochem. J., 2000, vol. 20, pp. 813–819.

    Google Scholar 

  27. 27

    Kurono, Y., Miyajima, M., Tsuji, T., Yano, T., Takeuchi, T., and Ikeda, K., Chem. Pharm. Bull. (Tokyo), 1991, vol. 39, pp. 1292–1294.

    CAS  Google Scholar 

  28. 28

    Ekici, O.D., Paetzel, M., and Dalbey, R.E., Protein Sci., 2008, vol. 17, pp. 2023–2037.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Belinskaya, D.A., Shmurak, V.I., Prokof’eva, D.S., and Goncharov, N.V., Toksikol. Vestn., 2012, no. 6, pp. 13–19.

  30. 30

    Belinskaya, D.A., Goncharov, N.V., Shmurak, V.I., and Prokofieva, D.S., Russ. J. Bioorg. Chem., 2014, vol. 40, pp. 499–506.

    CAS  Google Scholar 

  31. 31

    Belinskaia, D.A., Taborskaya, K.I., Goncharov, N.V., and Avdonin, P.V., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 359–367.

    CAS  Google Scholar 

  32. 32

    Belinskaya, D.A., Taborskaya, K.I., Goncharov, N.V., Shmurak, V.I., Avdonin, P.P., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2017, vol. 53, pp. 191–199.

    CAS  Google Scholar 

  33. 33

    Goncharov, N.V., Belinskaia, D.A., Shmurak, V.I., Terpilowski, M.A., Jenkins, R.O., and Avdonin, P.V., Molecules, 2017, vol. 22, e1201.

    PubMed  Google Scholar 

  34. 34

    Ascenzi, P. and Fasano, M., Biochem. Biophys. Res. Commun., 2012, vol. 422, pp. 219–223.

    CAS  PubMed  Google Scholar 

  35. 35

    Bender, M.L., Kezdy, F.J., and Wedler, F.C., J. Chem. Educ., 1967, vol. 44, pp. 84–88.

    CAS  PubMed  Google Scholar 

  36. 36

    De Caro, J.D., Rouimi, P., and Rovery, M., Eur. J. Biochem., 1986, vol. 158, pp. 601–607.

    CAS  PubMed  Google Scholar 

  37. 37

    Main, A.R., Science, 1964, vol. 144, pp. 992–993.

    CAS  PubMed  Google Scholar 

  38. 38

    Wilson, K. and Walker, J., Principles and Techniques of Biochemistry and Molecular Biology, 7th ed., Cambridge: Cambridge University Press, 2010.

    Google Scholar 

  39. 39

    Michaelis, L. and Menten, M.L., Biochem. Z., 1913, vol. 49, pp. 333–369.

    CAS  Google Scholar 

  40. 40

    Briggs, G.E. and Haldane, J.B.S., Biochem. J., 1925, vol. 19, pp. 338–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Morrison, J.F., Biochim. Biophys. Acta, 1969, vol. 185, pp. 269–286.

    CAS  PubMed  Google Scholar 

  42. 42

    Flach, E.H. and Schnell, S., Syst. Biol. (Stevenage), 2006, vol. 153, pp. 187–191.

    CAS  Google Scholar 

  43. 43

    Kuzmic, P., Anal. Biochem., 2009, vol. 394, pp. 287–289.

    CAS  PubMed  Google Scholar 

  44. 44

    Galimova, M.Kh., Fermentativnaya kinetika: spravochnik po mekhanizmam reaktsii (Enzymatic Kinetics: A Handbook of Reaction Mechanisms), Moscow: KomKniga, 2007.

  45. 45

    Lyangusov, A.Yu., Petrova, T.A., and Stefanov, V.E., Dokl. Biochem. Biophys., 2009, vol. 424, pp. 49–52.

    CAS  PubMed  Google Scholar 

  46. 46

    Boeckx, J., Hertog, M., Geeraerd, A., and Nicolai, B., Plant Methods, 2017, vol. 13, p. E69.

    Google Scholar 

  47. 47

    Furlong, C.E., Richter, R.J., Seidel, S.L., and Motulsky, A.G., Am. J. Hum. Genet., 1988, vol. 43, pp. 230–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Sogorb, M.A., Diaz-Alejo, N., Escudero, M.A., and Vilanova, E., Arch. Toxicol., 1998, vol. 72, pp. 219–226.

    CAS  PubMed  Google Scholar 

  49. 49

    Genheden, S. and Ryde, U., Expert Opin. Drug. Discov., 2015, vol. 10, pp. 449–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Saikia, S. and Bordoloi, M., Curr. Drug. Targets, 2019, vol. 20, pp. 501–521.

    CAS  PubMed  Google Scholar 

  51. 51

    Teodoro, M.L., Phillips, G.N., Jr., and Kavraki, L.E., in Proc. of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001), Seoul, Korea: IEEE Press, 2001, pp. 960–966.

  52. 52

    Pyrkov, T.V., Ozerov, I.V., Balitskaya, E.D., and Efremov, R.G., Russ. J. Bioorg. Chem., 2010, vol. 36, no. 4, pp. 446–454.

    CAS  Google Scholar 

  53. 53

    Hospital, A., Goñi, J.R., Orozco, M., and Gelpí, J.L., Adv. Appl. Bioinform. Chem., 2015, vol. 8, pp. 37–47.

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Kumari, R. and Kumar, R., Open Source Drug Discovery Consortium, and Lynn, A., J. Chem. Inf. Model, 2014, vol. 54, pp. 1951–1962.

    CAS  PubMed  Google Scholar 

  55. 55

    Liyasova, M.S., Schopfer, L.M., and Lockridge, O., Biochem. Pharmacol., 2010, vol. 79, pp. 784–791.

    CAS  PubMed  Google Scholar 

  56. 56

    Kohita, H., Matsushita, Y., and Moriguchi, I., Chem. Pharm. Bull. (Tokyo), 1994, vol. 42, pp. 937–940.

    CAS  PubMed  Google Scholar 

  57. 57

    Antoni, G., Casagli, M.C., Bigio, M., Borri, G., and Neri, P., Ital. J. Biochem., 1982, vol. 31, pp. 100–106.

    CAS  PubMed  Google Scholar 

  58. 58

    Brown, N.A. and Müller, W.E., Pharmacology, 1978, vol. 17, pp. 233–238.

    CAS  PubMed  Google Scholar 

  59. 59

    Mohammadi, F., Bordbar, A.K., Divsalar, A., Mohammadi, K., and Saboury, A.A., Protein J., 2009, vol. 28, pp. 189–196.

    CAS  PubMed  Google Scholar 

  60. 60

    Fonda, M.L., Trauss, C., and Guempel, U.M., Arch. Biochem. Biophys., 1991, vol. 288, pp. 79–86.

    CAS  PubMed  Google Scholar 

  61. 61

    Silva, D., Cortez, C.M., Cunha-Bastos, J., and Louro, S.R., Toxicol. Lett., 2004, vol. 147, pp. 53–61.

    CAS  PubMed  Google Scholar 

  62. 62

    Han, X., Snow, T.A., Kemper, R.A., and Jepson, G.W., Chem. Res. Toxicol., 2003, vol. 16, pp. 775–781.

    CAS  PubMed  Google Scholar 

  63. 63

    Aubry, A.F., Markoglou, N., and McGann, A., Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol., 1995, vol. 112, pp. 257–266.

    CAS  PubMed  Google Scholar 

  64. 64

    Frandsen, P.C. and Brodersen, R., Acta Chem. Scand., vol. 40, pp. 55–59.

  65. 65

    Hossain, M.K., Khatun, A., Rahman, M., Akter, M.N., Chowdhury, S.A., and Alam, S.M., Adv. Pharm. Bull., 2016, vol. 6, pp. 589–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Schneider, E.K., Huang, J.X., Carbone, V., Baker, M., Azad, M.A., Cooper, M.A., Li, J., and Velkov, T., J. Mol. Recognit., 2015, vol. 28, pp. 339–348.

    CAS  PubMed  Google Scholar 

  67. 67

    Jacobsen, J. and Brodersen, R., J. Biol. Chem., 1983, vol. 258, pp. 6319–6326.

    CAS  PubMed  Google Scholar 

  68. 68

    Uchida, H. and Hanano, M., Chem. Pharm. Bull. (Tokyo), 1974, vol. 22, pp. 1571–1579.

    CAS  Google Scholar 

  69. 69

    Danesh, N., Navaee, SedighiZ., Beigoli, S., Sharifi-Rad, A., Saberi, M.R., and Chamani, J., J. Biomol. Struct. Dyn., 2018, vol. 36, pp. 1747–1763.

    CAS  PubMed  Google Scholar 

  70. 70

    Barzegar, A., Moosavi-Movahedi, A.A., Sattarahmady, N., Hosseinpour-Faizi, M.A., Aminbakhsh, M., Ahmad, F., Saboury, A.A., Ganjali, M.R., and Norouzi, P., Protein Pept. Lett., 2007, vol. 14, pp. 13–18.

    CAS  PubMed  Google Scholar 

  71. 71

    Fitos, I., Visy, J., and Kardos, J., Chirality, 2002, vol. 14, pp. 442–448.

    CAS  PubMed  Google Scholar 

  72. 72

    Brée, F., Urien, S., Nguyen, P., Tillement, J.P., Steiner, A., Vallat-Molliet, C., Testa, B., Visy, J., and Simonyi, M., J. Pharm. Pharmacol., 1993, vol. 45, pp. 1050–1053.

    PubMed  Google Scholar 

  73. 73

    Chauhan, B., Kumar, G., Kalam, N., and Ansari, S.H., JAdv. Pharm. Technol. Res., 2013, vol. 4, pp. 4–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Avci, B., Bilge, S.S., Arslan, G., Alici, O., Darakci, O., Baratzada, T., Ciftcioglu, E., Yardan, T., and Bozkurt, A., Toxicol. Ind. Health., 2018, vol. 34, pp. 69–82.

    CAS  PubMed  Google Scholar 

  75. 75

    Mukherjee, S., Mukherjee, N., Saini, P., Roy, P., and Babu, S.P., Indian J. Exp. Biol., 2015, vol. 9, pp. 574–584.

    Google Scholar 

  76. 76

    Oyagbemi, A.A., Omobowale, T.O., Ochigbo, G.O., Asenuga, E.R., Ola-Davies, O.E., Ajibade, T.O., Saba, A.B., and Adedapo, A.A., J. Diet, vol. 15, no. Suppl. 2018, pp. 269–284.

  77. 77

    Sinha, S., Du, Z., Maiti, P., Klärner, F.G., Schrader, T., Wang, C., and Bitan, G., ACS Chem. Neurosci., 2012, vol. 3, pp. 451–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Goncharov, N., Maevsky, E., Voitenko, N., Novozhilov, A., Kubasov, I., Jenkins, R., and Avdonin, P., in Nutraceuticals: Efficacy, Safety and Toxicity, Gupta, R.C., Ed., Amsterdam: Academic Press/Elsevier, 2016, pp. 177–188.

    Google Scholar 

  79. 79

    Van der Vusse, G.J., Drug Metab. Pharmacokinet., 2009, vol. 24, pp. 300–307.

    CAS  PubMed  Google Scholar 

  80. 80

    Latruffe, N., Menzel, M., Delmas, D., Buchet, R., and Lancon, A., Molecules, 2014, vol. 19, pp. 17 066–17 077.

    Google Scholar 

  81. 81

    Duran, M., in Disorders of Mitochondrial Fatty Acid Oxidation and Ketone Body Handling, Blau, N., Duran, M., Blaskovics, M.E., Gibson, K.M, Eds., Berlin: Springer, 2003, pp. 309–334.

    Google Scholar 

  82. 82

    Rizzuti, B., Bartucci, R., Sportelli, L., and Guzzi, R., Arch. Biochem. Biophys., 2015, vol. 579, pp. 8–25.

    Google Scholar 

  83. 83

    Reichenwallner, J. and Hinderberger, D., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 5382–5393.

    CAS  PubMed  Google Scholar 

  84. 84

    Dasgupta, A. and Crossey, M.J., Am. J. Med. Sci., 1997, vol. 313, pp. 75–79.

    CAS  PubMed  Google Scholar 

  85. 85

    Takamura, N., Shinozawa, S., Maruyama, T., Suenaga, A., and Otagiri, M., Biol. Pharm. Bull., 1998, vol. 21, pp. 174–176.

    CAS  PubMed  Google Scholar 

  86. 86

    Vorum, H. and Honore, B., J. Pharm. Pharmacol., 1996, vol. 48, pp. 870–875.

    CAS  PubMed  Google Scholar 

  87. 87

    Batalova, A.A., Belinskaia, D.A., and Goncharov, N.V., in Sbornik trudov sed’moy nauchnoy konferentsii “Sovremennyye tendentsii razvitiya tekhnologiy zdorov’yesberezheniya” (Proceedings of the Seventh Scientific Conference “Modern Trends in the Development of Health Care Technologies”), Panin, V.P., Moscow: All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 2019, pp. 428–434.

  88. 88

    Belinskaya, D.A., Batalova, A.A., and Goncharov, N.V., Toksikol. Vestn., 2019, no. 3, pp. 26–32.

  89. 89

    Anraku, M., Yamasaki, K., Maruyama, T., Kragh-Hansen, U., and Otagiri, M., Pharm. Res., 2001, vol. 18, pp. 632–639.

    CAS  PubMed  Google Scholar 

  90. 90

    Goncharov, N.V., Terpilowski, M.A., Kudryavtsev, I.V., Serebryakova, M.K., Belinskaya, D.A., Sobolev, V.E., Shmurak, V.I., Korf, E.A., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2019, vol. 55, pp. 208–221.

    CAS  Google Scholar 

  91. 91

    Ellis, R.J. and Minton, A.P., Naiture, 2003, vol. 425, pp. 27–28.

    CAS  Google Scholar 

  92. 92

    Kuzntesova, I.M., Turoverov, K.K., and Uversky, V.N., Int. J. Mol. Sci., 2014, vol. 15, pp. 23 090–23 140.

    Google Scholar 

  93. 93

    Hirai, M., Ajito, S., Sugiyama, M., Iwase, H., Takata, S., Shimizu, N., Igarashi, N., Martel, A., and Porcar, L., Physica B: Condensed Matter, 2018, vol. 551, pp. 212–217.

    CAS  Google Scholar 

  94. 94

    Antifeeva, Yu.A., Povarova, O.I., Rodina, N.P., Sulatskii, M.I., Karasev, M.M., and Kuznetsova, I.M., Tsitologiya, 2018, vol. 60, pp. 856–859.

    Google Scholar 

  95. 95

    Chebotareva, N.A., Biochemistry (Moscow), 2007, vol. 72, pp. 1478–1490.

    CAS  PubMed  Google Scholar 

  96. 96

    Pozdnyakova, I. and Wittung-Stafshede, P., Biochim. Biophys. Acta, 2010, vol. 1804, pp. 740–744.

    CAS  PubMed  Google Scholar 

  97. 97

    Hou, S., Trochimczyk, P., Sun, L., Wisniewska, A., Kalwarczyk, T., Zhang, X., Wielgus-Kutrowska, B., Bzowska, A., and Holyst, R., Sci. Rep., 2016, vol. 6, e22033.

    Google Scholar 

  98. 98

    Chebotareva, N.A., Kurganov, B.I., and Livanova, N.B., Biochemistry (Moscow), 2004, vol. 69, pp. 1239–1251.

    CAS  PubMed  Google Scholar 

  99. 99

    Ota, C. and Takano, K., Langmuir, 2016, vol. 32, pp. 7372–7382.

    CAS  PubMed  Google Scholar 

  100. 100

    Zhu, T.T., Zhang, Y., Luo, X.A., Wang, S.Z., Jia, M.Q., and Chen, Z.X., J. Agric. Food Chem., 2018, vol. 66, pp. 1242–1250.

    CAS  PubMed  Google Scholar 

  101. 101

    Watson, A., Opresko, D., Young, R.A., Hauschild, V., King, J., and Bakshi, K., in Handbook of the Toxicology of Chemical Warfare Agents, Gupta, R.C, Ed., Amsterdam: Academic Press, Elsevier, 2015, pp. 111–130.

    Google Scholar 

  102. 102

    Deshpande, L.S., Phillips, K., Huang, B., and De Lorenzo, R.J., Neurotoxicology, 2014, vol. 44, pp. 352–357.

    CAS  PubMed  Google Scholar 

  103. 103

    Reddy, S.D. and Reddy, D.S., Epilepsia, 2015, vol. 56, pp. 813–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Reddy, S.D., Younus, I., Clossen, B.L., and Reddy, D.S., J. Pharmacol. Exp. Ther., 2015, vol. 353, pp. 517–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Lotti, M. and Moretto, A., Toxicol. Rev., 2005, vol. 24, pp. 37–49.

    CAS  PubMed  Google Scholar 

  106. 106

    Chepur, S.V., Toksikol. Vestn., 2010, no. 3, pp. 42–43.

  107. 107

    de Araujo Furtado, M., Rossetti, F., Chanda, S., and Yourick, D., Neurotoxicology, 2012, vol. 33, pp. 1476–1490.

    PubMed  Google Scholar 

  108. 108

    Goncharov, N.V., Nadeev, A.D., Jenkins, R.O., and Avdonin, P.V., Oxid. Med. Cell Longev., 2017. e9759735.

  109. 109

    Oruch, R., Pryme, I.F., Engelsen, B.A., and Lund, A., Neuropsychiatr. Dis. Treat., 2017, vol. 13, pp. 161–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Masson, P. and Lockridge, O., Arch. Biochem. Biophys., 2010, vol. 494, pp. 107–120.

    CAS  PubMed  Google Scholar 

  111. 111

    Bajaj, P., Tripathy, R.K., Aggarwal, G., and Pande, A.H., Sci. World J., 2014, e854391.

  112. 112

    Kirby, S.D., Norris, J.R., Richard, SmithJ., Bahnson, B.J., and Cerasoli, D.M., Chem. Biol. Interact., 2013, vol. 203, pp. 181–185.

    CAS  PubMed  Google Scholar 

  113. 113

    Lushchekina, S.V., Schopfer, L.M., Grigorenko, B.L., Nemukhin, A.V., Varfolomeev, S.D., Lockridge, O., and Masson, P., Front. Pharmacol., 2018, vol. 9, e211.

    Google Scholar 

  114. 114

    Ku, T.H., Zhang, T., Luo, H., Yen, T.M., Chen, P.W., Han, Y., and Lo, Y.H., Sensors (Basel), 2015, vol. 15, pp. 16 281–16 313.

    Google Scholar 

  115. 115

    Zhang, C., Wang, L., Tu, Z., Sun, X., He, Q., Lei, Z., Xu, C., Liu, Y., Zhang, X., Yang, J., Liu, X., and Xu, Y., Biosens. Bioelectron., 2014, vol. 55, pp. 216–219.

    CAS  PubMed  Google Scholar 

  116. 116

    Belinskaia, D.A., Avdonin, P.V., Avdonin, P.P., Jenkins, R.O., and Goncharov, N.V., Comput. Biol. Chem., 2019, vol. 80, pp. 452–462.

    CAS  PubMed  Google Scholar 

  117. 117

    Belinskaia, D.A. and Goncharov, N.V., in Doklady Mezhdunarodnoy konferentsii “Matematicheskaya biologiya i bioinformatika” (Proceedings of the International Conference “Mathematical Biology and Bioinformatics”), Lakhno, V.D., Pushchino: IMPB RAS, 2018, e83.

Download references


The work was performed under state task (project no. AAAA-А18-118012290142-9) and supported by the Russian Foundation for Basic Research (project no. 18-015-00304).

Author information



Corresponding author

Correspondence to D. A. Belinskaia.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: OP, organophosphates; HSA, human serum albumin; BSA, bovine serum albumin; RSA, rat serum albumin; EC, enzyme classification; NPA, p-nitrophenyl acetate; NMR, nuclear magnetic resonance; SF, scoring function; GTE, green tea extract; EGCG, epigallocatechin gallate; FA, fatty acids; XRC, X-ray crystallography; PEG, polyethylene glycol; MM-PBSA, molecular mechanics/Poisson–Boltzmann surface area.

Corresponding authors: phone: +7 (921) 580-69-19; +7 (812) 552-32-56; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belinskaia, D.A., Goncharov, N.V. Theoretical and Practical Aspects of Albumin Esterase Activity. Russ J Bioorg Chem 46, 287–298 (2020).

Download citation


  • albumin
  • esterases
  • organophosphates
  • allosteric modulation
  • adjuvant therapy