A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1,4-Disubstituted-1,2,3-Triazole Thymine Derivatives

Abstract

A new series of 1,4-disubstituted-1,2,3-triazolethymine derivatives (VIae) were synthesized and characterized by spectroscopic studies. The in vitro cytotoxic activities of selected compounds against human cancer cell line (MDA-MB 231) were evaluated by MTT assay. 4-Azido-N-substituted-benzenesulfonamides (Vce) and 4,4'-(4,4'-((5-methyl-2,4-dioxopyrimidine-1,3(2H,4H)-diyl)bis(methylene))-bis(1H-1,2,3-triazole-4,1-diyl))-bis(N-(4-methyl pyrimidin-2-yl)benzenesulfonamide) (VIc) displayed a significant cytotoxic activity with IC50 values of 1.61, 1.41, 1.61 and 1.81 μM, respectively. Molecular docking study of 4‑azido-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (Vd) and 4,4'-(4,4'-((5-methyl-2,4-dioxopyrimidine-1,3(2H,4H)-diyl)bis(methylene))-bis(1H-1,2,3-triazole-4,1-diyl))-bis (N-(4-methyl pyrimidin-2-yl)benzenesulfonamide) (VIc) showed hydrogen bonding with the amino acid residues of the receptors 1X7R and 1A53, respectively. These derivatives are useful as starting points for further study of new anticancer drugs and to confirm the potential of triazole-sulfonamide analogues as lead compounds in anticancer drug discovery. In addition, 1,4-disubstituted-1,2,3-triazolethymine derivatives (VIae) were evaluated in vitro for antiviral activity against the replication of HIV-1 and HIV-2 in MT-4 cells. The results showed that 1,4-disubstituted-1,2,3-triazolethymine derivatives (VIce) possess a potent activity against HIV-1 replication with IC50 values of 11.42, ≥15.25,and 14.36 μM, SI > 4, ≤6, >9, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 3983–3986.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Siegel, R., Ward, E., Brawley, O., and Jemal, A., Cancer Stat., 2011, vol. 61, pp. 212–236.

    Google Scholar 

  3. 3

    Stockler, M., Wilcken, N.R.C., Ghersi, D., and Simes, R.J., Cancer. Treat. Rev., 2000, vol. 26, pp. 151–168.

    CAS  PubMed  Google Scholar 

  4. 4

    Siegel, R., Ma, J., Zou, Z., and Jemal, A., Cancer Stat., 2014, vol. 64, pp. 9–29.

    Google Scholar 

  5. 5

    Raguz, S. and Yague, E., Br. J. Cancer, 2008, vol. 99, pp. 387–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Senwar, K.R., Sharma, P., Reddy, T.S., Jeengar, M.K., Nayak, V.L., Naidu, V.G.M., Kamal, A., and Shankaraiah, N., Eur J. Med. Chem., 2015, vol. 102, pp. 413–424.

    CAS  PubMed  Google Scholar 

  7. 7

    Gujar, R., Marwaha, A., White, J., Creason, S., Shackleford, D.M., Baldwan, J., Charman, W.M., Buckner, F.S., Rathod, P.K., and Phillip, M.A., J. Med. Chem., 2009, vol. 52, pp. 1864–1872.

    Google Scholar 

  8. 8

    Chu, X.M., Wang, C., Wang, W.L., Liang, L.L., Liu, W., Gong, K.K., and Sun, K.L., Eur. J. Med. Chem., 2019, vol. 166, pp. 206–223.

    CAS  PubMed  Google Scholar 

  9. 9

    D’hooghe, M., Vandekerckhove, S., Mollet, K., Vervisch, K., Dekeukeleire, S., Lehoucq, L., Lategan, C., Smith, P.J., Chibale, K., and De Kimpe, N., Beils. J. Org. Chem., 2011, vol. 7, pp. 1745–1752.

    Google Scholar 

  10. 10

    Labadie, G.R., de la Iglesia, A., and Morbidoni, H.R., Mol. Div., 2011, vol. 15, pp. 1017–1024.

    CAS  Google Scholar 

  11. 11

    Chinthala, Y., Thaku, S., Tirunagari, S., Chinde, S., Domatti, A.K., Arigari, N.K., Srinivas, K.S., Alam, S., Jonnala, K.K., Khan, F., Tiwari, A., and Grover, P., Eur. J. Med. Chem., 2015, vol. 93, pp. 564–573.

    CAS  PubMed  Google Scholar 

  12. 12

    Holla, B.S., Poojary, K.N., Rao, B.S., and Shivananda, M.K., Eur. J. Med. Chem., 2002, vol. 37, pp. 511–51.

    PubMed  Google Scholar 

  13. 13

    Prachayasittikul, V., Pingaew, R., Anuwongcharoen, N., Worachartcheewan, N., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., and Prachayasittikul, V., Springer Plus, 2015, vol. 4, pp. 571–593.

    PubMed  Google Scholar 

  14. 14

    Salmon, A.J., Williams, M.L., Wu, Q.K., Morizzi, J., Gregg, D., Charman, S.A., Vullo, D., Supuran, C.T., and Poulsen, S.-A., J. Med. Chem., 2012, vol. 55, pp. 5506–5517.

    CAS  PubMed  Google Scholar 

  15. 15

    Senwar, K.R., Sharma, P., Reddy, T.S., Jeengar, M.K., Nayak, V.L., Naidu, V.G.M., Kamal, A., and Shankaraiah, N., Eur. J. Med. Chem., 2015, vol. 102, pp. 413–424.

    CAS  PubMed  Google Scholar 

  16. 16

    Wei, G., Luan, W., Wang, S., Cui, Li.F., Liu, Y., Ya, Liu., and Cheng, M., Org. Biomol. Chem., 2015, vol. 13, pp. 1507–1514.

    CAS  PubMed  Google Scholar 

  17. 17

    Stefely, J.A., Palchaudhuri, R., Miller, P.A., Peterson, R.J., Moraski, G.C., Hergenrother, P.J., and Miller, M.J., J. Med. Chem., 2010, vol. 538, pp. 3389–3395.

    Google Scholar 

  18. 18

    Yadav, P., Lal, K., Kumar, A., Guru, S.K., Jaglan, S., and Bhushan, S., Eur. J. Med. Chem., 2017, vol. 126, pp. 944–953.

    CAS  Google Scholar 

  19. 19

    Salmon, A.J., Williams, M.L., Wu, Q.K., Morizzi, J., Gregg, D., Charman, S.A., Vullo, D., Supuran, C.T., and Poulsen, S.-A., J. Med. Chem., 2012, vol. 55, pp. 5506–5517.

    CAS  PubMed  Google Scholar 

  20. 20

    Doiron, J., Soultan, A.H., Richard, R., Touré, M.M., Picot, N., Richard, R., Čuperlović-Culf, M., Robichaud, G.A., and Touaibia, M., Eur. J. Med. Chem., 2011, vol. 46, pp. 4010–4024.

    CAS  PubMed  Google Scholar 

  21. 21

    Cheng, H., Wan, J., Lin, M.-I., Liu, Y., Lu, X., Liu, J., Xu, Y., Chen, J., Tu, Z., and Cheng, Y.-S.E., J. Med. Chem., 2012, vol. 55, pp. 2144–2153.

    CAS  PubMed  Google Scholar 

  22. 22

    Jordao, A.K., Ferreira, V.F., Souza, T.M.L., de Souza, FariaG.G., Machado, V., Abrantes, J.L., De Souza, M.B.C.V., and Cunha, A.C., Bioorg. Med. Chem., 2011, vol. 19, pp. 1860–1865.

    CAS  PubMed  Google Scholar 

  23. 23

    Ferreira, M.G., Pinheiro, L.C.S., Santos-Filho, O.S., Pecanha, M.D.S., Sacramento, C.Q., Machado, V., Ferreira, V.F., Souza, T.M.L., and Bia Boechat, N., Med. Chem. Res., 2014, vol. 23, pp. 501–1511.

    Google Scholar 

  24. 24

    Wuest, F., Tang, X., Kniess, T., Pietzsch, J., and Suresh, M., Bioorg. Med. Chem., 2009, vol. 17, pp. 1146–1151.

    CAS  PubMed  Google Scholar 

  25. 25

    Aher, N.G., Pore, V.S., Mishra, N.N., Kumar, A., Shukla, P.K., Sharma, A., and Bhat, M.K., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 759–763.

    CAS  PubMed  Google Scholar 

  26. 26

    Bakunov, S.A., Bakunova, S.M., Wenzler, T., Ghebru, M., Werbovetz, K.A., Brun, R., and Tidwell, R.R., J. Med. Chem., 2010, vol. 53, pp. 254–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Dai, Z.-C., Chen, Y.-F., Zhang, M., Li, S.-K., Yang, T.-T., Shen, L., Wang, J.-X., Qian, S.S., Zhu, H.-L., and Ye, Y.-H., Org. Biomol. Chem., 2015, vol. 13, pp. 477–486.

    CAS  PubMed  Google Scholar 

  28. 28

    Sumangala, V., Poojary, B., Chidananda, N., Fernandes, J., and Kumar, N.S., Arch. Pharm. Res., 2010, vol. 33, pp. 1911–1918.

    CAS  PubMed  Google Scholar 

  29. 29

    Song, M.-X. and Deng, X.-Q.,J. Enzym. Inhib. Med. Chem., 2018, vol. 33, pp. 453–478.

    CAS  Google Scholar 

  30. 30

    Lebeau, A., Abrioux, C., Benimelis, D., Benfodda, Z., and Meffre, P., Med. Chem., 2017, vol. 13, pp. 40–48.

    CAS  Google Scholar 

  31. 31

    Das A., Adak, A.K., Ponnapalli, K., Lin, C.-H., Hsu, K.-C., Yang, J.-M., Hsu, T.-A.,and Lin, C.-C., Eur. J. Med. Chem., 2016, vol. 123, pp. 397–406.

    CAS  PubMed  Google Scholar 

  32. 32

    Thirumurugan, P., Matosiuk, D., and Jozwiak, K., Chem. Rev., 2013, vol. 113, pp. 4905–4979.

    CAS  PubMed  Google Scholar 

  33. 33

    Ohmoto, K., Yamamoto, T., Horiuchi, T., Imanishi, H., Odagaki, Y., Kawabata, K., Sekioka, T., and Hirota, Y., J. Med. Chem., 2000, vol. 43, pp. 4927–4929.

    CAS  PubMed  Google Scholar 

  34. 34

    Duan, Y.-C., Zheng, Y.-C., Li, X.-C., Wang, M.-M., Ye, X.-W., Guan, Y.-Y., Liu, G.-Z., Zheng, J.-X., and Liu, H.-M., Eur. J. Med. Chem., 2013, vol. 64, pp. 99–110.

    CAS  PubMed  Google Scholar 

  35. 35

    Jin, X., Yan, T.H., Yan, L., Li, Q., Wang, R.L., Hu, Z.L., Jiang, Y.Y., Sun, Q.Y., and Cao, Y.B., Clin. Cancer Res., 2014, vol. 8, pp. 1047–1059.

    CAS  Google Scholar 

  36. 36

    Manneganti, V., Lakshmi, Anu., Prabhavathi, Devi., Bethala, L.D., Rachapudi, B.P., Singh, A., and Ummanni, R., Int. J. Pharm. Sci. Res., 2017, vol. 38, pp. 1635–1649.

    Google Scholar 

  37. 37

    Ma, L.-Y., Pang, L.-P., Wang, B., Zhang, M., Hu, B., Xue, D.-Q., Shao, K.-P., Zhang, B.-L., Lui, Y., Zhang, E., and Hong-Min Liu, Eur. J. Med. Chem., 2014, vol. 86, pp. 368–380.

    CAS  PubMed  Google Scholar 

  38. 38

    Fu, D.-J., Fu, L., Liu, Y.-C., Wang, J.-W., Wang, Y.-Q., Han, B.-K., and Li, Z.-R., Sci. Rep., 2017, vol. 7, pp. 1–12.

    Google Scholar 

  39. 39

    Mohammed, I., Kummetha, I.R., Singh, G., Sharova, N., Lichinchi, G., Dang, J., Stevenson, M., and Rana, T.M., J. Med. Chem., 2016, vol. 59, pp. 7677–7682.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Whiting, M., Muldoon, J., Lin, Y.C., Silverman, S.M., Lindstrom, W., Olson, A.J., Kolb, H.C., Finn, M., Sharpless, K.B., and Elder, J.H., Angew. Chem. Inter. Ed., 2006, vol. 45, pp. 1435–1439.

    CAS  Google Scholar 

  41. 41

    Zhao, Y.-L., Dichtel, W.R., Trabolsi, A., Saha, S., Aprahamian, I., and Stoddart, J.F., J. Am. Chem. Soc., 2008, vol. 130, pp. 11 294–11 296.

    Google Scholar 

  42. 42

    Fournier, D., Hoogenboom, R., and Schubert, U.S., Chem. Soc. Rev., 2007, vol. 36, pp. 1369–1380.

    CAS  PubMed  Google Scholar 

  43. 43

    Lutz, J.F., Angew. Chem. Int. Ed., 2007, vol. 46, pp. 1018–1025.

    CAS  Google Scholar 

  44. 44

    Angell, Y.L. and Burgess, K., Chem. Soc. Rev., 2007, vol. 36, pp. 1674–1689.

    CAS  PubMed  Google Scholar 

  45. 45

    Moses, J.E. and Moorhouse, A.D., Chem. Soc. Rev., 2007, vol. 36, pp. 1249–1262.

    CAS  PubMed  Google Scholar 

  46. 46

    Zhou, Y., Zhao, Y., O’Boyle, K.M., and Murphy, P.V., Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 954–958.

    CAS  PubMed  Google Scholar 

  47. 47

    Joshi, M.C., Arkivoc, 2011, vol. 10, pp. 139–147.

    Google Scholar 

  48. 48

    Mosmann, T.J., Immunol. Methods, 1993, vol. 65, pp. 5–63.

    Google Scholar 

  49. 49

    Harris, J.R., Lippman, M.E., Veronesi, U., and Willet, W., New Eng. J. Med., 1992, vol. 337, pp. 390–395.

    Google Scholar 

  50. 50

    Yager, J.D. and Davidson, N.E., New Eng. J. Med., 2006, vol. 354, pp. 270–282.

    CAS  PubMed  Google Scholar 

  51. 51

    Chang, E.C., Frasor, J., Komm, B., and Katzenellenbogen, B.S., Endocrinology, 2006, vol. 147, pp. 483–4842.

    Google Scholar 

  52. 52

    Trott, O. and Olson, A.J., J. Comput. Chem., 2010, vol. 31, pp. 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J., and De Clercq, E., J. Virol. Methods, 1988, vol. 20, pp. 309–321.

    CAS  PubMed  Google Scholar 

  54. 54

    Hargrave, K.D., Proudfoot, J.R., Grozinger, K.G., Cullen, E., Kapadia, S.R., Patel, U.R., Fuchs, V.U., and Mauldin, S.C., J. Med. Chem., 1991, vol. 34, pp. 2231–2241.

    CAS  PubMed  Google Scholar 

  55. 55

    Mitsuya, H., Weinhold, K.J., Furman, P.A., Clair, M.H., Lehrmann, S.N., Gallo, R., Bolognesi, D., Barry, D.W., and Broder, S., Proc. Natl. Acad. Sci. U. S. A., 1985, vol. 82, pp. 7096–7100.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C.F., Karlsson, A., Balzarini, J., and Camarasa, M.J., J. Med. Chem., 1994, vol. 37, pp. 4185–4194.

    CAS  PubMed  Google Scholar 

  57. 57

    Krim, J., Sillahi, B., Taourirte, M., Rakib, E.M., and Engels, J.W., Arkivoc, 2009, vol. 13, pp. 142–152.

    Google Scholar 

  58. 58

    Popovic, M., Sarngadharan, M.G., Read, E., and Gallo, R.C., Science, 1984, vol. 224, pp. 497–500.

    CAS  PubMed  Google Scholar 

  59. 59

    Barré -Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., and Montagnier, L., Science, 1993, vol. 220, pp. 868–871.

  60. 60

    Miyoshi, I., Taguchi, H., Kobonishi, I., Yoshimoto, S., Ohtsuki, Y., Shiraishi, Y., and Akagi, T., Gann. Monogr.Cancer. Res., 1982, vol. 28, pp. 219–228.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Azhar Rasul (Cell and Molecular Biology Lab, Department of Zoology and Cytology, Government College University, Faisalabad 38000, Pakistan) for performing the evaluation of anti-breast cancer cells (MDA-MB231).We also thank Prof. C. Pannecouque of Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium, for the anti-HIV screening. This work was financially supported by the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed Majeed Jassem.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performedby any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Corresponding author: e-mail: ahmed.majedd@uobasrah.edu.iq.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faeza Abdul Kareem Almashal, Al-Hujaj, H.H., Jassem, A.M. et al. A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1,4-Disubstituted-1,2,3-Triazole Thymine Derivatives. Russ J Bioorg Chem 46, 360–370 (2020). https://doi.org/10.1134/S1068162020030024

Download citation

Keywords:

  • breast cancer cell line (MDA-MB 231)
  • anti-HIV activity
  • molecular docking
  • click reaction
  • 1,2,3-triazole thymine derivatives