Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 150–157 | Cite as

Development of Search Strategy for Peptide Inhibitors of Immune Checkpoints

  • S. V. Podlesnykh
  • D. V. Shanshin
  • E. A. Kolosova
  • D. E. Murashkin
  • O. N. Shaprova
  • D. N. Shcherbakov
  • A. I. Chapoval


Current strategy for the blockade of molecules inhibiting T-cell immunity, the immune checkpoints (ICP), such as CTLA-4, PD-1, and B7-H1(PD-L1), using monoclonal antibodies (mAbs), showed significant clinical effects in cancer immunotherapy. In this kind of therapy, antibodies do not kill tumor cells directly, but block inhibitory signals for T lymphocytes, resulting in activation of the immune response cascade that eliminate malignant cells and lead to tumor degradation. However, the mAb preparations have some limitations, and the development of new low-molecular-weight antagonists (for example, peptides) is an important issue. In this study, we used peptide microarrays and phage display libraries to search for peptides that interact with the immune checkpoints. We found peptides that specifically bind CTLA-4, PD-1, B7-1, B7-2 and B7-H1(PD-L1) which play important role in the regulation of the immune responses. These synthetic peptides can be applied to the development of new immunomodulating drugs for cancer immunotherapy.


synthetic peptides co-stimulatory molecules immune checkpoints immune response peptide microchips immunotherapy immunomodulation phage display 



the cytotoxic receptor 4 of a T-lymphocyte


the receptor of the programmed cell death for a T-lymphocyte

В7-1/2 and B7-H1(PD-L1)

ligands of the CTLA-4 and PD-1 receptors


immune checkpoint


monoclonal antibody


T-cellular receptor


major histocompatibility complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelev, G.I., Soros. Obrazovat. Zh., 1996, no. 5, pp. 4–10.Google Scholar
  2. 2.
    Grosso, F.J. and Jure-Kunkel, M.N., Cancer Immun., 2013, vol. 13, pp. 5–14.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Buchbinder, E.I. and Desai, A., Am. J. Clin. Oncol., 2016, vol. 39, pp. 98–106.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Postow, M.A., Callahan, M.K., and Wolchok, J.D., J. Clin. Oncol., 2015, vol. 33, pp. 1974–1982.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pardoll, D.M., Nat. Rev. Cancer, 2012, vol. 12, pp. 252–264.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sharma, P. and Allison, J.P., Science, 2015, vol. 348, pp. 56–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Freidlin, I.S., Med. Immunol., 2005, vol. 7, no. 4, pp. 347–354.CrossRefGoogle Scholar
  8. 8.
    Athanassakis, I. and Vassiliadis, S., Immunol. Lett., 2002, vol. 84, pp. 179–183.CrossRefPubMedGoogle Scholar
  9. 9.
    Saito, T. and Yamasaki, S., Immunol. Rev., 2003, vol. 192, pp. 143–160.CrossRefPubMedGoogle Scholar
  10. 10.
    Medina, P.J. and Adams, V.R., Pharmacotherapy, 2016, vol. 36, pp. 317–334.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Haspot, F., Fehr, T., Gibbons, C., Zhao, G., Hogan, T., Honjo, T., Freeman, G.J., and Sykes, M., Blood, 2008, vol. 112, pp. 2149–2155.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kadagidze, Z.G., Chertkova, A.I., Zabotina, T.N., Korotkova, O.V., Slavina, E.G., and Borunova, A.A., Zh. Zlokachestv. Opukh., 2015, no. 1, pp. 24–31.Google Scholar
  13. 13.
    Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A., Immunity, 1994, vol. 1, pp. 405–413.CrossRefPubMedGoogle Scholar
  14. 14.
    Brahmer, J.R., Clin. Adv. Hematol. Oncol., 2012, vol. 10, pp. 674–675.PubMedGoogle Scholar
  15. 15.
    Shapoval, A.I., Podlesnykh, S.V., Kolosova, E.A., and Shcherbakov, D.N., Ross. Onkol. Zh., 2017, no. 4, pp. 175–179.Google Scholar
  16. 16.
    Vlieghe, P., Lisowski, V., Martinez, J., and Khrestchatisky, M., Drug Discov. Today, 2010, vol. 15, pp. 40–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Skerra, A., Curr. Opin. Biotechnol., 2007, vol. 18, pp. 295–304.CrossRefPubMedGoogle Scholar
  18. 18.
    Volpe, M., J. Cardiol., 2014, vol. 176, pp. 630–639.Google Scholar
  19. 19.
    Fosgerau, K. and Hoffmann, T., Drug Discov. Today, 2015, vol. 20, pp. 122–128.CrossRefPubMedGoogle Scholar
  20. 20.
    Brandt, C.R., J. Ocul. Pharmacol. Ther., 2014, vol. 30, pp. 691–699.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schluter, N., De Sterke, A., Willmes, D.M., Spranger, J., Jordan, J., and Birkenfeld, A.L., Pharmacol. Ther., 2014, vol. 144, pp. 12–27.CrossRefGoogle Scholar
  22. 22.
    Podlesnykh, S.V., Kolosova, E.A., Shcherbakov, D.N., Shaidurov, A.A., Anisimov, D.S., Ryazanov, M.A., Johnston, S.A., Shoikhet, Y.N., Petrova, V.D., Lazarev, A.F., and Chapoval, A.I., Bull. Exp. Biol. Med., 2016, vol. 161, pp. 816–820.CrossRefPubMedGoogle Scholar
  23. 23.
    Shengdian, W., Gefeng, Z., Koji, T., Lieping, C., and Jürgen, B., J. Exp. Med., 2002, vol. 195, pp. 1033–1041.CrossRefGoogle Scholar
  24. 24.
    Lee, J.Y., Lee, H.T., Shin, W., Chae, J., Choi, J., Kim, S.H., Lim, H., Heo, T.W., Park, K.Y., Lee, Y.J., Ryu, S.E., Son, J.Y., Lee, J.U., and Heo, Y.S., Nat. Commun., 2016, vol. 7, p. 13354.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Legutki, J.B., Zhao, Z.G., Greving, M., Woodbury, N., Johnston, S.A., and Stafford, P., Nature Commun., 2014, vol. 5, p. 4785.CrossRefGoogle Scholar
  26. 26.
    Shcherbakova, N.S., Chikaev, A.N., Karpenko, L.I., and Il’ichev, A.A., Mol. Gen. Microb. Virol., 2012, vol. 27, pp. 22–27.CrossRefGoogle Scholar
  27. 27.
    Tolmacheva, V.V., Apyari, V.V., Ibragimova, B.N., Kochuk, E.V., Dmitrienko, S.G., and Zolotov, Yu.A., Zh. Anal. Khim., 2015, vol. 70, pp. 1149–1158.Google Scholar
  28. 28.
    Ph.D.Phage Display Libraries. Instructional Manual, New England BioLabs Inc.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Podlesnykh
    • 1
  • D. V. Shanshin
    • 2
  • E. A. Kolosova
    • 1
  • D. E. Murashkin
    • 2
  • O. N. Shaprova
    • 2
  • D. N. Shcherbakov
    • 1
    • 2
  • A. I. Chapoval
    • 1
    • 3
  1. 1.Russian-American Anti-Cancer CenterAltai State UniversityBarnaul, Altaiskii kraiRussia
  2. 2.”VECTOR” State Research Center of Virology and BiotechnologyKoltsovoRussia
  3. 3.Center for Innovations in Medicine, Biodesign InstituteArizona State UniversityTempeUnited States

Personalised recommendations