Skip to main content
Log in

The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of new 1,3,4-oxadiazol-2-yl-acrylic acids was synthesized by cyclization of 4-(2-R-hydrazino)- 4-oxo-2-butenic acids, and their antibacterial and protistocidal activities were studied. The p-substituted benzyl derivatives in the Z-form were shown to exhibit a high protistocidal activity, which exceeded that of the reference drug Baycox (toltrazuril) by several times, whereas the 3-hydroxy-2-naphthyl derivative, in addition to a very high protistocidal activity, also exhibited a moderate antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sova, M., Mini-Rev. Med. Chem., 2012, vol. 12, no. 8, pp. 749–767.

    Article  CAS  PubMed  Google Scholar 

  2. Heleno, S.A., Ferreira, I.C.F.R., Esteves, A.P., Ciric, A., Glamoclija, J., Martins, A., Sokovic, M., and Queiroz, M.J.R.P., Food Chem. Toxicol., 2013, vol. 58, pp. 95–100.

    Article  CAS  PubMed  Google Scholar 

  3. Hu, Y.-H., Chen, C.-M., Xu, L., Cui, Y., Yu, X.-Y., Gao, H.-J., Wang, Q., Liu, K., Shi, Y., and Chen, Q.-X., Postharvest Biol. Technol., 2015, vol. 104, pp. 33–41.

    Article  CAS  Google Scholar 

  4. Bisogno, F., Mascoti, L., Sanchez, C., Garibotto, F., Giannini, F., Kurina-Sanz, M., and Enriz, R., J. Agric. Food Chem., 2007, vol. 55, no. 26, pp. 10635–10640.

    Article  CAS  PubMed  Google Scholar 

  5. Hoskins, J.A., J. Appl. Toxycol., 1984, vol. 4, no. 6, pp. 283–292.

    Article  CAS  Google Scholar 

  6. Li, L., Zhao, P., Hu, J., Liu, J., Liu, Y., Wang, Z., Xia, Y., Dai, Y., and Chen, L., Eur. J. Med. Chem., 2015, vol. 93, pp. 300–307.

    Article  CAS  PubMed  Google Scholar 

  7. Liang, C., Pei, S., Ju, W., Jia, M., Tian, D., Tang, Y., and Mao, G., Eur. J. Med. Chem., 2017, vol. 133, pp. 319–328.

    Article  CAS  PubMed  Google Scholar 

  8. De, P., Baltas, M., and Bedos-Belval, F., Curr. Med. Chem., 2011, vol. 18, no. 11, pp. 1672–1703.

    Article  CAS  PubMed  Google Scholar 

  9. Yen, G.-C., Chen, Y.-L., Sun, F.-M., Chiang, Y.-L., Lu, S.-H., and Weng, C.-J., Eur. J. Pharmac. Sci., 2011, vol. 44, no. 3, pp. 281–287.

    Article  CAS  Google Scholar 

  10. Hu, Y.-H., Chen, Q.-X., Cui, Y., Gao, H.-J., Xu, L., Yu, X.-Y., Wang, Y., Yan, C-L., and Wang, Q., Int. J. Biol. Macromol., 2016, vol. 86, pp. 489–495.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H., Zhou, Q., Cao, J., and Wang, Y., Spectrochim. Acta, Part A, 2013, vol. 116, pp. 251–257.

    Article  CAS  Google Scholar 

  12. Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., and Carotti, A., Eur. J. Med. Chem., 2011, vol. 46, pp. 191–200.

    Article  CAS  PubMed  Google Scholar 

  13. De Vita, D., Simonetti, G., Pandolfi, F., Costi, R., Di Santo, R., D’Auria, F.D., and Scipione, L., Bioorg. Med. Chem. Lett., 2016, vol. 26, no. 24, pp. 5931–5935.

    Article  PubMed  Google Scholar 

  14. Thakkar, J.N., Tiwari, V., and Desai, U.R., Biomacromolecules, 2010, vol. 11, no. 5, pp. 1412–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brozic, P., Golob, B., Gomboc, N., Rizner, T.L., and Gobec, S., Mol. Cell. Endocrinol., 2006, vol. 248, nos. 1–2, pp. 233–235.

    Article  CAS  PubMed  Google Scholar 

  16. Adisakwattana, S., Sompong, W., Meeprom, A., Ngamukote, S., and Yibchok-anun, S., Int. J. Mol. Sci., 2012, vol. 13, no. 2, pp. 1778–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adisakwattana, S., Moonsan, P., and Yibchok-anun, S., J. Agric. Food Chem., 2008, vol. 56, no. 17, pp. 7838–7844.

    Article  CAS  PubMed  Google Scholar 

  18. Prabhakar, P.K. and Doble, M., J. Agric. Food Chem., 2011, vol. 59, no. 18, pp. 9835–9844.

    Article  CAS  PubMed  Google Scholar 

  19. Loetchutinat, C., Chau, F., and Mankhetkorn, S., Chem. Pharm. Bull., 2003, vol. 51, pp. 728–730.

    Article  CAS  PubMed  Google Scholar 

  20. Bostrom, J., Hogner, A., Llinas, A., Wellner, E., and Plowright, A.T., J. Med. Chem., 2012, vol. 55, no. 5, pp. 1817–1830.

    Article  PubMed  Google Scholar 

  21. Murty, M.S.R., Penthala, R., Buddana, S.K., Prakasham, R.S., Das, P., Polepalli, S., Jain, N., and Bojja, S., Med. Chem. Res., 2014, vol. 23, no. 10, pp. 4579–4594.

    Article  CAS  Google Scholar 

  22. Shi, W., Qian, X., Zhang, R., and Song, G., J. Agric. Food Chem., 2001, vol. 49, no. 1, pp. 124–130.

    Article  CAS  PubMed  Google Scholar 

  23. Jha, K.K., Samad, A., Kumar, Ya., Shaharyar, M., Khosa, R.L., Jain, Ja., Kumar, V., and Singh, P., Eur. J. Med. Chem., 2010, vol. 45, no. 11, pp. 4963–4967.

    Article  CAS  PubMed  Google Scholar 

  24. Rozhkov, S.S., Ovchinnikov, K.L., Krasovskaya, G.G., Danilova, A.S., and Kolobov, A.V., Zh. Org. Khim., 2015, vol. 51, no. 7, pp. 1000–1005.

    Google Scholar 

  25. Detert, H. and Schollmeier, D., Synthesis, 1999, vol. 51, no. 6, pp. 999–1004.

    Article  Google Scholar 

  26. Gutov, O.V., Cryst. Growth Des., 2013, vol. 13, no. 9, pp. 3953–3957.

    Article  CAS  Google Scholar 

  27. Le Berre, A., Godin, J., and Garreau, R., Acad. Sci. Ser. 3, vol. 265, p. 570.

  28. Siegrist, A.E., Moergeli, E., and Hoelzle, K., US Patent no. 2765304, 1956.

    Google Scholar 

  29. Kokunov, Yu.V., Gorbunova, Yu.E., Popov, L.D., Kovalev, V.V., Razgonyaeva, G.A., Kozyukhin, S.A., and Borodkin, S.A., Koord. Khim., 2016, vol. 42, no. 6, pp. 323–328.

    Article  Google Scholar 

  30. Fetisov, L.N., Zubenko, A.A., Bodryakov, A.N., and Bodryakova, M.A., in Materialy mezhdunarodnogo parazitologicheskogo simpoziuma “Sovremennye problemy obshchei i chastnoi parazitologii” (Proc. Int. Parasitol. Symp. “Modern Problems of General and Special Parasitology”), 2012, pp. 70–73.

    Google Scholar 

  31. Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veschestv (A Guide to Experimental (Preclinical) Study of New Pharmaceuticals), Khabriev, R.U., Ed., Moscow: Meditsina, 2005.

  32. Rukovodstvo po provedeniyu doklinicheskikh issledovany lekarstvennykh sredstv (A Guide to Preclinical Drug Research), Mironov, A.N., Ed., Moscow: Grif i K, 2012, part 1.

  33. Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam. Metodicheskie ukazaniya. MUK 4.2.1890-04 (Determination of the Sensitivity of Microorganisms to Antibacterial Drugs. Methodical Instructions. MUK 4.2.1890-04), Moscow: Meditsina, 2004.

  34. Pershin, G.N., Metody eksperimental’noy khimioterapii (Methods of Experimental Chemotherapy), Moscow: Meditsina, 1971, pp. 100–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Popov.

Additional information

Original Russian Text © L.D. Popov, A.A. Zubenko, L.N. Fetisov, Yu.D. Drobin, A.I. Klimenko, A.N. Bodryakov, S.A. Borodkin, I.E. Melkozerova, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 2, pp. 225–231.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, L.D., Zubenko, A.A., Fetisov, L.N. et al. The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities. Russ J Bioorg Chem 44, 238–243 (2018). https://doi.org/10.1134/S1068162018010132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018010132

Keywords

Navigation