Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 129–139 | Cite as

A Role of Vesicular Transduction of Intercellular Signals in Cancer Development

  • N. A. Logvina
  • V. O. Shender
  • G. P. Arapidi
  • T. D. Holina
Review Article

Abstract

Export of biologically active compounds is essential for any living cell. Transport of bioactive molecules through a cellular membrane can be active, or passive, or vesicular. In the past decade, vesicular transduction of intercellular signals has attracted great interest in the scientific community. An extremely important role of the vesicle transduction has been established for almost all processes in a living body. Not only profiles of protein and RNA expression in a cell, but also its secretome change during various pathologies, including cancer development. The enhanced secretion of vesicles by transformed cells is one important factor in creating a special microenvironment that favors tumor progression. At present, a role of exosomes has been demonstrated for such important processes as an epithelial-mesenchymal transition, angiogenesis, metastatic niche formation, chemotherapeutic resistance, and interaction with the immune system. The special biological role of the extracellular vesicles and their basic differences depend on their molecular composition. Therefore, special protein and lipid markers are responsible for a vesicular targeted delivery with information due to the preferable interaction with cells of a definite type. The exosomes of cancer cells can facilitate apoptosis or growth of neighboring malignant cells depending on the exosome composition. These and other special features of the extracellular vesicles make studies of their composition and role especially interesting and attract significant attention from researchers. Despite the rapid progress in this field, there are still many unresolved problems, such as a search for specific markers which allow identification of different types of vesicles or vesicles secreted by distinct cells, as well as screening of vesicular markers of cancers and other diseases that are associated with disorders in a functioning immune system. This review is mainly focused on the role of intercellular vesicular transport of bioorganic molecules in cancer progression. We believe that a successful treatment of oncological diseases is impossible without an understanding of the intercellular communication of both cancer cells between each other and with other systems of an organism and with a concept of an active participation of the cell-secreted vesicles in this process.

Keywords

transduction of intercellular signals exosomes extracellular vesicles cancers 

Abbreviations

АBs

apoptotic bodies

EV

an extracellular vesicle

MVBs

multivesicular bodies

ADAM10

the disintegrin and metalloproteinase domain 10

AKT

the alpha serine/threonine-protein kinase

Bcl-2

the B-cell lymphoma 2

Bim

the Bcl-2-like protein 11

BIRC5

the baculoviral inhibitor of apoptosis repeat-containing 5

Bsx

the brain-specific homeobox protein homolog

CXCR2

the C-X-C chemokine receptor type 2

СD

a cluster of differentiation

EDH1

the EH domain-containing protein 1, where EH is the EPS15 homologue and EPS15 is the epidermal growth factor receptor substrate 15

EGF

the epidermal growth factor

EGFR

the receptor of the epidermal growth factor

ESCRT

the endosomal sorting complex required for transport

EMMPRIN

the extracellular matrix metalloproteinase inducer

EpCAM

an epithelial cell adhesion molecule

EPS8L

the epidermal growth factor receptor kinase substrate 8-like protein 2

ERG

the ETS-related gene

ETS

erythroblast transformation-specific

ERK

extracellular signal–regulated kinases

GPC1

glypican 1

HER-2

the human epidermal growth factor receptor 2

HSP

heat shock proteins

IL

interleukin

JNK

the c-Jun N-terminal kinase

L1CAM

the L1 cell adhesion molecule

MAPK

the mitogen-activated protein kinase

MHC

the major histocompatibility complex

miR

a micro-RNA

MLCK

the myosin light-chain kinase

NFκB

the nuclear factor kappa-lightchain- enhancer of activated B cells

PCA

a prostate cancer antigen

PDCD4

the programmed cell death protein 4

PI3

phosphoinositide 3-kinase

PLD

phospholipase D

PTEN

phosphatase and tensin homolog deleted on chromosome 10

Rab

the Ras-related protein in brain

Ras

the rat sarcoma

Rho

the ρ Greek letter

ROCK1

the rho-associated, coiled-coil-containing protein kinase 1

Src

sarcoma

TGF

the transforming growth factor

TMPRSS

the transmembrane serine protease 2

TSG101

the tumor susceptibility gene 101

TYRP-2

the tyrosinase-related protein 2

VEGF

the vascular endothelial growth factor

Vps4

the vacuolar protein sorting- associated protein 4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chargaff, E. and West, R., J. Biol. Chem., 1946, vol. 166, pp. 189–197.PubMedGoogle Scholar
  2. 2.
    Knox, K.W., Vesk, M., and Work, E., J. Bacteriol., 1966, vol. 92, pp. 1206–1217.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Soler, N., Marguet, E., Verbavatz, J.-M., and Forterre, P., Res. Microbiol., 2008, vol. 159, pp. 390–399.PubMedGoogle Scholar
  4. 4.
    Kalra, H., Drummen, G.P.C., and Mathivanan, S., Int. J. Mol. Sci., 2016, vol. 17, p. 170.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bobrie, A., Colombo, M., Raposo, G., and Thery, C., Traffic, 2011, vol. 12, pp. 1659–1668.PubMedGoogle Scholar
  6. 6.
    Raposo, G. and Stoorvogel, W., J. Cell Biol., 2013, vol. 200, pp. 373–383.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mathivanan, S., Lim, J.W.E., Tauro, B.J., Ji, H., Moritz, R.L., and Simpson, R.J., Mol. Cell Proteomics, 2010, vol. 9, pp. 197–208.PubMedGoogle Scholar
  8. 8.
    Pols, M.S. and Klumperman, J., Exp. Cell Res., 2009, vol. 315, pp. 1584–1592.PubMedGoogle Scholar
  9. 9.
    Perez-Hernandez, D., Gutierrez-Vazquez, C., Jorge, I., Lopez-Martin, S., Ursa, A., Sanchez-Madrid, F., Vazquez, J., and Yanez-Mo, M., J. Biol. Chem., 2013, vol. 288, pp. 11649–11661.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Stuffers, S., Sem, Wegner C., Stenmark, H., and Brech, A., Traffic, 2009, vol. 10, pp. 925–937.PubMedGoogle Scholar
  11. 11.
    Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M., Science, 2008, vol. 319, pp. 1244–1247.PubMedGoogle Scholar
  12. 12.
    Ostrowski, M., Carmo, N.B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C.F., Schauer, K., Hume, A.N., Freitas, R.P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M.C., Darchen, F., Amigorena, S., Moita, L.F., and Thery, C., Nat. Cell Biol., 2010, vol. 12, pp. 19–30.PubMedGoogle Scholar
  13. 13.
    Bevers, E.M. and Williamson, P.L., FEBS Lett., 2010, vol. 584, pp. 2724–2730.PubMedGoogle Scholar
  14. 14.
    Daleke, D.L., J. Lipid Res., 2003, vol. 44, pp. 233–242.PubMedGoogle Scholar
  15. 15.
    Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., and D’Souza-Schorey, C., Curr. Biol., 2009, vol. 19, pp. 1875–1885.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lane, J.D., Allan, V.J., and Woodman, P.G., J. Cell Sci., 2005, vol. 118, pp. 4059–4071.PubMedGoogle Scholar
  17. 17.
    Chang, J., Xie, M., Shah, V.R., Schneider, M.D., Entman, M.L., Wei, L., and Schwartz, R.J., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 14495–14500.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J., Nat. Cell Biol., 2001, vol. 3, pp. 346–352.PubMedGoogle Scholar
  19. 19.
    Coleman, M.L., Sahai, E.A., Yeo, M., Bosch, M., Dewar, A., and Olson, M.F., Nat. Cell Biol., 2001, vol. 3, pp. 339–345.PubMedGoogle Scholar
  20. 20.
    Suzuki, J., Denning, D.P., Imanishi, E., Horvitz, H.R., and Nagata, S., Science, 2013, vol. 341, pp. 403–406.PubMedGoogle Scholar
  21. 21.
    Poon, I.K.H., Chiu, Y.-H., Armstrong, A.J., Kinchen, J.M., Juncadella, I.J., Bayliss, D.A., and Ravichandran, K.S., Nature, 2014, vol. 507, pp. 329–334.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mathivanan, S., Ji, H., and Simpson, R.J., J. Proteomics, 2010, vol. 73, pp. 1907–1920.PubMedGoogle Scholar
  23. 23.
    Yakimchuk, K., Devices Methods Measurements, 2015, vol. 5, pp. 228–235.Google Scholar
  24. 24.
    Subra, C., Laulagnier, K., Perret, B., and Record, M., Biochimie, 2007, vol. 89, pp. 205–212.PubMedGoogle Scholar
  25. 25.
    Ciardiello, C., Cavallini, L., Spinelli, C., Yang, J., Reis-Sobreiro, M., De Candia, P., Minciacchi, V.R., and di Vizio, D., Int. J. Mol. Sci., 2016, vol. 17, p. 175.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lydic, T.A., Townsend, S., Adda, C.G., Collins, C., Mathivanan, S., and Reid, G.E., Methods, 2015, vol. 87, pp. 83–95.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wubbolts, R., Leckie, R.S., Veenhuizen, P.T.M., Schwarzmann, G., Mobius, W., Hoernschemeyer, J., Slot, J.-W., Geuze, H.J., and Stoorvogel, W., J. Biol. Chem., 2003, vol. 278, pp. 10963–10972.PubMedGoogle Scholar
  28. 28.
    Brouwers, J.F., Aalberts, M., Jansen, J.W.A., van Niel, G., Wauben, M.H., Stout, T.A.E., Helms, J.B., and Stoorvogel, W., Proteomics, 2013, vol. 13, pp. 1660–1666.PubMedGoogle Scholar
  29. 29.
    Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J.-F., Kobayashi, T., Salles, J.-P., Perret, B., Bonnerot, C., and Record, M., Biochem. J., 2004, vol. 380, pp. 161–171.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Matsuo, H., Chevallier, J., Mayran, N., Le Blanc, I., Ferguson, C., Faure, J., Blanc, N.S., Matile, S., Dubochet, J., Sadoul, R., Parton, R.G., Vilbois, F., and Gruenberg, J., Science, 2004, vol. 303, pp. 531–534.PubMedGoogle Scholar
  31. 31.
    Saunderson, S.C., Dunn, A.C., Crocker, P.R., and McLellan, A.D., Blood, 2014, vol. 123, pp. 208–216.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Batista, B.S., Eng, W.S., Pilobello, K.T., Hendricks-Munoz, K.D., and Mahal, L.K., J. Proteome Res., 2011, vol. 10, pp. 4624–4633.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O., Nat. Cell Biol., 2007, vol. 9, pp. 654–659.PubMedGoogle Scholar
  34. 34.
    Thakur, B.K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazier, H., Xiang, J., Williams, C., Rodriguez-Barrueco, R., Silva, J.M., Zhang, W., Hearn, S., Elemento, O., Paknejad, N., Manova-Todorova, K., Welte, K., Bromberg, J., Peinado, H., and Lyden, D., Cell Res., 2014, vol. 24, pp. 766–769.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., and Xu, W., J. Hematol. Oncol., 2015, vol. 8, p. 83.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Logozzi, M., Milito, A., Lugini, L., Borghi, M., Calabro, L., Spada, M., Perdicchio, M., Marino, M.L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M., Huber, V., Maio, M., Rivoltini, L., and Fais, S., PLoS One, 2009, vol. 4, e5219.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Skog, J., Wurdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Sena-Esteves, M., Curry, W.T., Jr., Carter, B.S., Krichevsky, A.M., and Breakefield, X.O., Nat. Cell Biol., 2008, vol. 10, pp. 1470–1476.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Graner, M.W., Alzate, O., Dechkovskaia, A.M., Keene, J.D., Sampson, J.H., Mitchell, D.A., and Bigner, D.D., FASEB J., 2009, vol. 23, pp. 1541–1557.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Howitt, J. and Hill, A.F., J. Biol Chem., 2016, vol. 291, p. 26589–26597.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B.A., Callahan, M.K., Yuan, J., Martins, V.R., Skog, J., Kaplan, R.N., Brady, M.S., Wolchok, J.D., Chapman, P.B., Kang, Y., Bromberg, J., and Lyden, D., Nat. Med., 2012, vol. 18, pp. 883–891.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., and Rak, J., Nat. Cell Biol., 2008, vol. 10, pp. 619–624.PubMedGoogle Scholar
  42. 42.
    Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X.O., and Widmark, A., Br. J. Cancer, 2009, vol. 100, pp. 1603–1607.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Li, J., Sherman-Baust, C.A., Tsai-Turton, M., Bristow, R.E., Roden, R.B., and Morin, P.J., BMC Cancer, 2009, vol. 9, p. 244.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Keller, S., Konig, A.-K., Marme, F., Runz, S., Wolterink, S., Koensgen, D., Mustea, A., Sehouli, J., and Altevogt, P., Cancer Lett., 2009, vol. 278, pp. 73–81.PubMedGoogle Scholar
  45. 45.
    Melo, S.A., Luecke, L.B., Kahlert, C., Fernandez, A.F., Gammon, S.T., Kaye, J., LeBleu, V.S., Mittendorf, E.A., Weitz, J., Rahbari, N., Reissfelder, C., Pilarsky, C., Fraga, M.F., Piwnica-Worms, D., and Kalluri, R., Nature, 2015, vol. 523, pp. 177–182.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lin, S.-Y., Chang, C.-H., Wu, H.-C., Lin, C.-C., Chang, K.-P., Yang, C.-R., Huang, C.-P., Hsu, W.-H., Chang, C.-T., and Chen, C.-J., Sci Rep., 2016, vol. 6, p. 34446.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen, T.S., Lai, R.C., Lee, M.M., Choo, A.B.H., Lee, C.N., and Lim, S.K., Nucleic Acids Res., 2010, vol. 38, pp. 215–224.PubMedGoogle Scholar
  48. 48.
    Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B., Nucleic Acids Res., 2011, vol. 39, pp. 7223–7233.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gallo, A., Tandon, M., Alevizos, I., and Illei, G.G., PLoS One, 2012, vol. 7, e30679.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yu, S., Cao, H., Shen, B., and Feng, J., Oncotarget, 2015, vol. 6, pp. 37151–37168.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Taylor, D.D. and Gercel-Taylor, C., Gynecol. Oncol., 2008, vol. 110, pp. 13–21.PubMedGoogle Scholar
  52. 52.
    Rabinowits, G., Gercel-Taylor, C., Day, J.M., Taylor, D.D., and Kloecker, G.H., Clin. Lung Cancer, 2009, vol. 10, pp. 42–46.PubMedGoogle Scholar
  53. 53.
    Silva, J., Garcia, V., Zaballos, A., Provencio, M., Lombardia, L., Almonacid, L., Garcia, J.M., Dominguez, G., Pena, C., Diaz, R., Herrera, M., Varela, A., and Bonilla, F., Eur. Respir. J., 2011, vol. 37, pp. 617–623.PubMedGoogle Scholar
  54. 54.
    Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., and Tewari, M., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 10513–10518.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Brase, J.C., Johannes, M., Schlomm, T., Falth, M., Haese, A., Steuber, T., Beissbarth, T., Kuner, R., and Sultmann, H., Int. J. Cancer, 2011, vol. 128, pp. 608–616.PubMedGoogle Scholar
  56. 56.
    Tanaka, Y., Kamohara, H., Kinoshita, K., Kurashige, J., Ishimoto, T., Iwatsuki, M., Watanabe, M., and Baba, H., Cancer, 2013, vol. 119, pp. 1159–1167.PubMedGoogle Scholar
  57. 57.
    Takeshita, N., Hoshino, I., Mori, M., Akutsu, Y., Hanari, N., Yoneyama, Y., Ikeda, N., Isozaki, Y., Maruyama, T., Akanuma, N., Komatsu, A., Jitsukawa, M., and Matsubara, H., Br. J. Cancer, 2013, vol. 108, pp. 644–652.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Corcoran, C., Friel, A.M., Duffy, M.J., Crown, J., and O’Driscoll, L., Clin. Chem., 2011, vol. 57, pp. 18–32.PubMedGoogle Scholar
  59. 59.
    Ohshima, K., Inoue, K., Fujiwara, A., Hatakeyama, K., Kanto, K., Watanabe, Y., Muramatsu, K., Fukuda, Y., Ogura, S.-I., Yamaguchi, K., and Mochizuki, T., PLoS One, 2010, vol. 5, p. e13247.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Del Conde, I., Shrimpton, C.N., Thiagarajan, P., and Lopez, J.A., Blood, 2005, vol. 106, pp. 1604–1611.PubMedGoogle Scholar
  61. 61.
    Falati, S., Liu, Q., Gross, P., Merrill-Skoloff, G., Chou, J., Vandendries, E., Celi, A., Croce, K., Furie, B.C., and Furie, B., J. Exp. Med., 2003, vol. 197, pp. 1585–1598.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Mezouar, S., Darbousset, R., Dignat-George, F., Panicot-Dubois, L., and Dubois, C., Int. J. Cancer, 2015, vol. 136, pp. 462–475.PubMedGoogle Scholar
  63. 63.
    Pluskota, E., Woody, N.M., Szpak, D., Ballantyne, C.M., Soloviev, D.A., Simon, D.I., and Plow, E.F., Blood, 2008, vol. 112, pp. 2327–2335.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Bernimoulin, M., Waters, E.K., Foy, M., Steele, B.M., Sullivan, M., Falet, H., Walsh, M.T., Barteneva, N., Geng, J.-G., Hartwig, J.H., Maguire, P.B., and Wagner, D.D., J. Thromb. Haemost., 2009, vol. 7, pp. 1019–1028.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Keerthikumar, S., Gangoda, L., Liem, M., Fonseka, P., Atukorala, I., Ozcitti, C., Mechler, A., Adda, C.G., Ang, C.-S., and Mathivanan, S., Oncotarget, 2015, vol. 6, pp. 15375–15396.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Minciacchi, V.R., You, S., Spinelli, C., Morley, S., Zandian, M., Aspuria, P.-J., Cavallini, L., Ciardiello, C., Reis Sobreiro, M., Morello, M., Kharmate, G., Jang, S.C., Kim, D.-K., Hosseini-Beheshti, E., Tomlinson Guns, E., Gleave, M., Gho, Y.S., Mathivanan, S., Yang, W., Freeman, M.R., and Di Vizio, D., Oncotarget, 2015, vol. 6, pp. 11327–11341.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lunavat, T.R., Cheng, L., Kim, D.-K., Bhadury, J., Jang, S.C., Lasser, C., Sharples, R.A., Lopez, M.D., Nilsson, J., Gho, Y.S., Hill, A.F., and Lotvall, J., RNA Biol., 2015, vol. 12, pp. 810–823.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Weerheim, A.M., Kolb, A.M., Sturk, A., and Nieuwland, R., Anal. Biochem., 2002, vol. 302, pp. 191–198.PubMedGoogle Scholar
  69. 69.
    Losito, I., Patruno, R., Conte, E., Cataldi, T.R.I., Megli, F.M., and Palmisano, F., Anal. Chem., 2013, vol. 85, pp. 6405–6413.PubMedGoogle Scholar
  70. 70.
    Mallat, Z., Hugel, B., Ohan, J., Leseche, G., Freyssinet, J.M., and Tedgui, A., Circulation, 1999, vol. 99, pp. 348–353.PubMedGoogle Scholar
  71. 71.
    Turiak, L., Misjak, P., Szabo, T.G., Aradi, B., Paloczi, K., Ozohanics, O., Drahos, L., Kittel, A., Falus, A., Buzas, E.I., and Vekey, K., J. Proteomics, 2011, vol. 74, pp. 2025–2033.PubMedGoogle Scholar
  72. 72.
    Lleo, A., Zhang, W., McDonald, W.H., Seeley, E.H., Leung, P.S.C., Coppel, R.L., Ansari, A.A., Adams, D.H., Afford, S., Invernizzi, P., and Gershwin, M.E., Hepatology, 2014, vol. 60, pp. 1314–1323.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Atkin-Smith, G.K., Tixeira, R., Paone, S., Mathivanan, S., Collins, C., Liem, M., Goodall, K.J., Ravichandran, K.S., Hulett, M.D., and Poon, I.K.H., Nat. Commun., 2015, vol. 6, p. 7439.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Balkwill, F.R., Capasso, M., and Hagemann, T., J. Cell Sci., 2012, vol. 125, pp. 5591–5596.PubMedGoogle Scholar
  75. 75.
    Koga, K., Matsumoto, K., Akiyoshi, T., Kubo, M., Yamanaka, N., Tasaki, A., Nakashima, H., Nakamura, M., Kuroki, S., Tanaka, M., and Katano, M., Anticancer Res., 2005, vol. 25, pp. 3703–3707.PubMedGoogle Scholar
  76. 76.
    Demory, Beckler M., Higginbotham, J.N., Franklin, J.L., Ham, A.-J., Halvey, P.J., Imasuen, I.E., Whitwell, C., Li, M., Liebler, D.C., and Coffey, R.J., Mol. Cell Proteomics, 2013, vol. 12, pp. 343–355.Google Scholar
  77. 77.
    Soldevilla, B., Rodriguez, M., San, Millan C., Garcia, V., Fernandez-Perianez, R., Gil-Calderon, B., Martin, P., Garcia-Grande, A., Silva, J., Bonilla, F., and Dominguez, G., Hum. Mol. Genet., 2014, vol. 23, pp. 467–478.PubMedGoogle Scholar
  78. 78.
    Qu, J.-L., Qu, X.-J., Zhao, M.-F., Teng, Y.-E., Zhang, Y., Hou, K.-Z., Jiang, Y.-H., Yang, X.-H., and Liu, Y.-P., Dig. Liver Dis., 2009, vol. 41, pp. 875–880.PubMedGoogle Scholar
  79. 79.
    Kogure, T., Lin, W.-L., Yan, I.K., Braconi, C., and Patel, T., Hepatology, 2011, vol. 54, pp. 1237–1248.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., and Rak, J., Nat. Cell Biol., 2008, vol. 10, pp. 619–624.PubMedGoogle Scholar
  81. 81.
    Meehan, K. and Vella, L.J., Crit. Rev. Clin. Lab. Sci., 2016, vol. 53, pp. 121–131.PubMedGoogle Scholar
  82. 82.
    Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic, Mark M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A.E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J.M., Dumont-Cole, V.D., Kramer, K., Wexler, L.H., Narendran, A., Schwartz, G.K., Healey, J.H., Sandstrom, P., Labori, K.J., Kure, E.H., Grandgenett, P.M., Hollingsworth, M.A., De Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W.R., Brady, M.S., Fodstad, O., Muller, V., Pantel, K., Minn, A.J., Bissell, M.J., Garcia, B.A., Kang, Y., Rajasekhar, V.K., Ghajar, C.M., Matei, I., Peinado, H., Bromberg, J., and Lyden, D., Nature, 2015, vol. 527, pp. 329–335.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Atay, S., Banskota, S., Crow, J., Sethi, G., Rink, L., and Godwin, A.K., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 711–716.PubMedGoogle Scholar
  84. 84.
    Hood, J.L., San, R.S., and Wickline, S.A., Cancer Res., 2011, vol. 71, pp. 3792–3801.PubMedGoogle Scholar
  85. 85.
    Costa-Silva, B., Aiello, N.M., Ocean, A.J., Singh, S., Zhang, H., Thakur, B.K., Becker, A., Hoshino, A., Mark, M.T., Molina, H., Xiang, J., Zhang, T., Theilen, T.-M., Garcia-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T.-L., Labori, K.J., Lothe, I.M.B., Kure, E.H., Hernandez, J., Doussot, A., Ebbesen, S.H., Grandgenett, P.M., Hollingsworth, M.A., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W.R., Schwartz, R.E., Matei, I., Peinado, H., Stanger, B.Z., Bromberg, J., and Lyden, D., Nat. Cell Biol., 2015, vol. 17, pp. 816–826.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ostenfeld, M.S., Jeppesen, D.K., Laurberg, J.R., Boysen, A.T., Bramsen, J.B., Primdal-Bengtson, B., Hendrix, A., Lamy, P., Dagnaes-Hansen, F., Rasmussen, M.H., Bui, K.H., Fristrup, N., Christensen, E.I., Nordentoft, I., Morth, J.P., Jensen, J.B., Pedersen, J.S., Beck, M., Theodorescu, D., Borre, M., Howard, K.A., Dyrskjot, L., and Orntoft, T.F., Cancer Res., 2014, vol. 74, pp. 5758–5771.PubMedGoogle Scholar
  87. 87.
    Elmageed, Z.Y., Yang, Y., Thomas, R., Ranjan, M., Mondal, D., Moroz, K., Fang, Z., Rezk, B.M., Moparty, K., Sikka, S.C., Sartor, O., and Abdel-Mageed, A.B., Stem. Cells, 2014, vol. 32, pp. 983–997.Google Scholar
  88. 88.
    Ristorcelli, E., Beraud, E., Mathieu, S., Lombardo, D., and Verine, A., Int. J. Cancer, 2009, vol. 125, pp. 1016–1026.PubMedGoogle Scholar
  89. 89.
    Koga, K., Matsumoto, K., Akiyoshi, T., Kubo, M., Yamanaka, N., Tasaki, A., Nakashima, H., Nakamura, M., Kuroki, S., Tanaka, M., and Katano, M., Anticancer Res., 2005, vol. 25, pp. 3703–3707.PubMedGoogle Scholar
  90. 90.
    Yang, L., Wu, X.-H., Wang, D., Luo, C.-L., and Chen, L.-X., Mol. Med. Rep., 2013, vol. 8, pp. 1272–1278.PubMedGoogle Scholar
  91. 91.
    Cappellesso, R., Tinazzi, A., Giurici, T., Simonato, F., Guzzardo, V., Ventura, L., Crescenzi, M., Chiarelli, S., and Fassina, A., Cancer Cytopathol., 2014, vol. 122, pp. 685–693.PubMedGoogle Scholar
  92. 92.
    Kahlert, C., Melo, S.A., Protopopov, A., Tang, J., Seth, S., Koch, M., Zhang, J., Weitz, J., Chin, L., Futreal, A., and Kalluri, R., J. Biol. Chem., 2014, vol. 289, pp. 3869–3875.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wang, J., Hendrix, A., Hernot, S., Lemaire, M., De Bruyne, E., van Valckenborgh, E., Lahoutte, T., de Wever, O., Vanderkerken, K., and Menu, E., Blood, 2014, vol. 124, pp. 555–566.PubMedGoogle Scholar
  94. 94.
    Federici, C., Petrucci, F., Caimi, S., Cesolini, A., Logozzi, M., Borghi, M., D’Ilio, S., Lugini, L., Violante, N., Azzarito, T., Majorani, C., Brambilla, D., and Fais, S., PLoS One, 2014, vol. 9, e88193.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Safaei, R., Larson, B.J., Cheng, T.C., Gibson, M.A., Otani, S., Naerdemann, W., and Howell, S.B., Mol. Cancer Ther., 2005, vol. 4, pp. 1595–1604.PubMedGoogle Scholar
  96. 96.
    Shedden, K., Xie, X.T., Chandaroy, P., Chang, Y.T., and Rosania, G.R., Cancer Res., 2003, vol. 63, pp. 4331–4337.PubMedGoogle Scholar
  97. 97.
    Ciravolo, V., Huber, V., Ghedini, G.C., Venturelli, E., Bianchi, F., Campiglio, M., Morelli, D., Villa, A., Della, Mina P., Menard, S., Filipazzi, P., Rivoltini, L., Tagliabue, E., and Pupa, S.M., J. Cell Physiol., 2012, vol. 227, pp. 658–667.PubMedGoogle Scholar
  98. 98.
    Aung, T., Chapuy, B., Vogel, D., Wenzel, D., Oppermann, M., Lahmann, M., Weinhage, T., Menck, K., Hupfeld, T., Koch, R., Trumper, L., and Wulf, G.G., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 15336–15341.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Xiao, X., Yu, S., Li, S., Wu, J., Ma, R., Cao, H., Zhu, Y., and Feng, J., PLoS One, 2014, vol. 9, e89534.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Corcoran, C., Rani, S., O’Brien, K., O’Neill, A., Prencipe, M., Sheikh, R., Webb, G., McDermott, R., Watson, W., Crown, J., and O’Driscoll, L., PLoS One, 2012, vol. 7, e50999.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Corcoran, C., Rani, S., and O’Driscoll, L., Prostate, 2014, vol. 74, pp. 1320–1334.PubMedGoogle Scholar
  102. 102.
    Challagundla, K.B., Wise, P.M., Neviani, P., Chava, H., Murtadha, M., Xu, T., Kennedy, R., Ivan, C., Zhang, X., Vannini, I., Fanini, F., Amadori, D., Calin, G.A., Hadjidaniel, M., Shimada, H., Jong, A., Seeger, R.C., Asgharzadeh, S., Goldkorn, A., and Fabbri, M., J. Natl. Cancer Inst., 2015, vol. 107, djv135.Google Scholar
  103. 103.
    Takahashi, K., Yan, I.K., Kogure, T., Haga, H., and Patel, T., FEBS Open Bio, 2014, vol. 4, pp. 458–467.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hu, Y., Yan, C., Mu, L., Huang, K., Li, X., Tao, D., Wu, Y., and Qin, J., PLoS One, 2015, vol. 10, e0125625.PubMedPubMedCentralGoogle Scholar
  105. 105.
    King, H.W., Michael, M.Z., and Gleadle, J.M., BMC Cancer, 2012, vol. 12, p. 421.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Umezu, T., Tadokoro, H., Azuma, K., Yoshizawa, S., Ohyashiki, K., and Ohyashiki, J.H., Blood, 2014, vol. 124, pp. 3748–3757.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Svensson, K.J., Kucharzewska, P., Christianson, H.C., Skold, S., Lofstedt, T., Johansson, M.C., Morgelin, M., Bengzon, J., Ruf, W., and Belting, M., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 13147–13152.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kucharzewska, P., Christianson, H.C., Welch, J.E., Svensson, K.J., Fredlund, E., Ringnér, M., Mörgelin, M., Bourseau-Guilmain, E., Bengzon, J., and Belting, M., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 7312–7317.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Logvina
    • 1
  • V. O. Shender
    • 1
  • G. P. Arapidi
    • 1
  • T. D. Holina
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow GSP-7Russia

Personalised recommendations