Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 140–149 | Cite as

Regulation of Natural Rubber Biosynthesis by Proteins Associated with Rubber Particles

  • A. Yu. Amerik
  • Yu. Tc. Martirosyan
  • I. V. Gachok
Review Article


Natural rubber, cis-1,4-polyisoprene, is an essential raw material used in thousands of products, many of which are absolutely necessary for medical purposes. Natural rubber is obtained from latex, an aqueous emulsion present in the laticiferous vessels of the natural rubber-producing plants. Hevea brasiliensis (the Brazilian rubber tree) currently is the only commercially important source of natural rubber. H. brasiliensis crops have very little genetic variability, leaving rubber plantations at risk of serious pathogenic attacks. In addition, repeated exposure to residual proteins in latex products derived from H. brasiliensis have led to serious and widespread allergic (type I) hypersensitivity. Therefore, identification of alternative sources of natural rubber is a very important biotechnological task. Potentially, Russian dandelion (Taraxacum kok-saghyz) may be such an alternative because significant amounts of natural rubber are produced in its root system. However, H. brasiliensis is a more efficient producer of natural rubber than T. kok-saghyz. Thus, improvement of rubber biosynthesis in plants is a first-priority problem of modern biotechnology. In this review, we describe proteins that may increase the concentration of natural rubber in laticiferous vessels of T. kok-saghyz and its close relative Taraxacum brevicorniculatum, when overexpressed in the plants. These proteins, cis-prenyltransferases, rubber transferase activator, and small rubber particle proteins, are directly involved in synthesis of the polyisoprene chain. We also analyze the effects of their expression levels on the production of natural rubber in vivo.


natural rubber rubber particles Taraxacum kok-saghyz cis-prenyltransferases rubber transferase activator small rubber particle proteins 



acetyl coenzyme A




cis-prenyltransferases 1–3




farnesyl pyrophosphate


3-hydroxy-3-methylglutaryl coenzyme A



HRT1 and HRT2

cis-prenyltransferases 1 and 2


Nogo-B receptor


T. brevicorniculatum cis-prenyltransferase activator


RNA interference


small rubber particle-associated protein


endoplasmic reticulum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eng A. H., Ong E. L. Hevea natural rubber, in Plastics Engineering: Handbook of Elastomers, Bhowmick, A.K. and Stephens, H.L., Eds., New York: Marcel Dekker, 2000, vol. 61, pp. 29–59.Google Scholar
  2. 2.
    McIntyre, D., Stephens, H.L., Schloman, W.W., Jr., and Bhowmick, A.K., Guayule rubber, in Plastics Engineering: Handbook of Elastomers, Bhowmick, A.K. and Stephens, H.L., Eds., New York: Marcel Dekker, 2000, vol. 61, pp. 1–27.Google Scholar
  3. 3.
    Puskas, J.E., Producers and world market of synthetic rubbers, in Biopolymers, Polyisoprenoids, Koyama, E. and Steinbuchel, A., Eds., Weinheim: Wiley, 2001, vol. 2, pp. 287–320.Google Scholar
  4. 4.
    Cornish, K., Hypoallergenic natural rubber products from Parthenium argentatum (gray) and other non-Hevea brasiliensis species, US Patent nos. 5580942, 1996; 5717050, 1998.Google Scholar
  5. 5.
    Nyburg, S.C., Acta Crystallogr., 1954, vol. 7, pp. 385–392.CrossRefGoogle Scholar
  6. 6.
    Tanaka, Y., Prog. Polym. Sci., 1989, vol. 14, pp. 339–371.CrossRefGoogle Scholar
  7. 7.
    Swanson, C.L., Buchana, R.A., and Otey, F.H., J. Appl. Polym. Sci., 1979, vol. 23, pp. 743–748.CrossRefGoogle Scholar
  8. 8.
    Castillon, J. and Cornish, K., Phytochemistry, 1999, vol. 51, pp. 43–51.CrossRefGoogle Scholar
  9. 9.
    Cornish, K., Castillon, J., and Scott, D.J., Biomacromolecules, 2000, vol. 1, pp. 632–641.CrossRefPubMedGoogle Scholar
  10. 10.
    Ownby, D.R., Ownby, H.E., McCullough, J., and Shafer, A.W., J. Allergy Clin. Immunol., 1996, vol. 97, pp. 1188–1192.CrossRefPubMedGoogle Scholar
  11. 11.
    Pailhories, G., Clin. Rev. Allergy, 1993, vol. 11, pp. 391–402.PubMedGoogle Scholar
  12. 12.
    Tomazic, V.J., Withrow, T.J., Fisher, B.R., and Dillard, S.F., Clin. Immunol. Immunopathol., 1992, vol. 64, pp. 89–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Morales, C., Basomba, A., Carreira, J., and Sastre, A., Clin. Exp. Allergy, 1989, vol. 19, pp. 425–430.CrossRefPubMedGoogle Scholar
  14. 14.
    Slater, J.E., N. Engl. J. Med., 1989, vol. 320, pp. 1126–1130.CrossRefPubMedGoogle Scholar
  15. 15.
    Mooibroek, H. and Cornish, K., Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 355–365.CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka, Y., Aik-Hwee, E., Ohya, N., Nishiyama, N., Tangpakdee, J., Kawahara, S., and Wititsuwannakul, R., Phytochemistry, 1996, vol. 41, pp. 1501–1505.CrossRefGoogle Scholar
  17. 17.
    Cornish, K., Eur. J. Biochem., 1993, vol. 218, pp. 267–271.CrossRefPubMedGoogle Scholar
  18. 18.
    Cornish, K. and Backhaus, R.A., Phytochemistry, 1990, vol. 29, pp. 3809–3813.CrossRefGoogle Scholar
  19. 19.
    Madhavan, S., Greenblatt, G.A., Foster, M.A., and Benedictc, R., Plant Physiol., 1989, vol. 89, pp. 506–511.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Archer, B.L., Audley, B.G., Cockbain, E.G., and McSweeney, G.P., Biochem. J., 1963, vol. 89, pp. 565–574.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cornish, K. and Siler, D.J., Plant Physiol. Biochem., 1996, vol. 34, pp. 377–384.Google Scholar
  22. 22.
    Chappell, J., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 521–547.CrossRefGoogle Scholar
  23. 23.
    Holstein, S.A. and Hohl, R.J., Lipids, 2004, vol. 39, pp. 293–309.CrossRefPubMedGoogle Scholar
  24. 24.
    Goldstein, J.L. and Brown, S.B., Nature, 1990, vol. 343, pp. 425–430.CrossRefPubMedGoogle Scholar
  25. 25.
    Miziorko, H., Arch. Biochem. Biophys., 2011, vol. 505, pp. 131–143.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dellas, N., Thomas, S.T., Manning, G., and Noel, J.P., eLife, 2013, vol. 2, e00672.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vinokur, J.M., Korman, T.P., Cao, Z., and Bowie, J.U., Biochemistry, 2014, vol. 53, pp. 4161–4168.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Azami, Y., Hattori, A., Nishimura, H., Kawaide, H., Yoshimura, T., and Hemmi, H., J. Biol. Chem., 2014, vol. 289, pp. 15957–15967.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Seetang-Nun, Y., Sharkey, T.D., and Suvachittanont, W., J. Plant Physiol., 2008, vol. 165, pp. 991–1002.CrossRefPubMedGoogle Scholar
  30. 30.
    Sando, T., Takeno, S., Watanabe, N., Okumoto, H., Kuzuyama, T., Yamashita, A., Hattori, M., Ogasawara, N., Fukusaki, E., and Kobayashi, A., Biosci. Biotechnol. Biochem., 2008, vol. 72, pp. 2903–2917.CrossRefPubMedGoogle Scholar
  31. 31.
    Archer, B.L. and Audley, B.G., Linn. Soc., 1987, vol. 94, pp. 181–196.Google Scholar
  32. 32.
    Scott, D.J., Da Costa, B.M.T., Espy, S.C., Keasling, J.D., and Cornish, K., Phytochemistry, 2003, vol. 64, pp. 123–134.CrossRefPubMedGoogle Scholar
  33. 33.
    Puskas, J.E., Gautriaud, E., Deffieux, A., and Kennedy, J.P., Prog. Polym. Sci., 2006, vol. 31, pp. 533–548.CrossRefGoogle Scholar
  34. 34.
    Yokozawa, T. and Yokoyama, A., Chem. Rec., 2005, vol. 5, pp. 47–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Yokozawa, T. and Yokoyama, A., Polym. J., 2004, vol. 36, pp. 65–83.CrossRefGoogle Scholar
  36. 36.
    Liang, P.H., Ko, T.-P., and Wang, A.H.J., Eur. J. Biochem., 2002, vol. 269, pp. 3339–3354.CrossRefPubMedGoogle Scholar
  37. 37.
    Arias, M., Hernandez, M., Remondegui, N., Huvenaars, K., van Dijk, P., and Ritter, E., Sci. Rep., 2016, vol. 6, p. 31031.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang, Y., Iaffaldano, B.J., Zhuang, X., Cardina, J., and Cornish, K., BMC Plant Biol., 2017, vol. 17, pp. 1–34.CrossRefGoogle Scholar
  39. 39.
    van Beilen, J.B. and Poirier, Y.., Crit. Rev. Biotech., vol. 27, pp. 217–231.Google Scholar
  40. 40.
    Cornish, K., Phytochemistry, 2001, vol. 57, pp. 1123–1134.CrossRefPubMedGoogle Scholar
  41. 41.
    Siler, D.J. and Cornish, K., Phytochemistry, 1993, vol. 32, pp. 1097–1102.CrossRefGoogle Scholar
  42. 42.
    Takahashi, S. and Koyama, T., Chem. Rec., 2006, vol. 6, pp. 194–205.CrossRefPubMedGoogle Scholar
  43. 43.
    Bouvier, F., Rahier, A., and Camara, B., Prog. Lipid. Res., 2005, vol. 44, pp. 357–429.CrossRefPubMedGoogle Scholar
  44. 44.
    Lange, B.M. and Ghassemian, M., Plant. Mol. Biol., 2003, vol. 51, pp. 925–948.CrossRefPubMedGoogle Scholar
  45. 45.
    Cunillera, N., Arró, M., Delourme, D., Karst, F., Boronat, A., and Ferrer, A., J. Biol. Chem., 1996, vol. 271, pp. 7774–7780.CrossRefPubMedGoogle Scholar
  46. 46.
    Oh, S.K., Han, K.H., Ryu, S.B., and Kang, H., J. Biol. Chem., 2000, vol. 275, pp. 18482–18488.CrossRefPubMedGoogle Scholar
  47. 47.
    Asawatreratanakul, K., Zhang, Y.W., Wititsuwannakul, D., Wititsuwannakul, R., Takahashi, S., Rattanapittayaporn, A., and Koyama, T., Eur. J. Biochem., 2003, vol. 270, pp. 4671–4680.CrossRefPubMedGoogle Scholar
  48. 48.
    Schmidt, T., Lenders, M., Hillebrand, A., van Deenen, N., Munt, O., Reichelt, R., Eisenreich, W., Fischer, R., Prufer, D., and Gronover, C.S., BMC. Biochem., 2010, vol. 11, p. 11.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Schmidt, T., Hillebrand, A., Wurbs, D., Wahler, D., Lenders, M., Schulze Gronover, C., and Prufer, D., Plant Mol. Biol. Rep., 2010, vol. 28, pp. 277–284.CrossRefGoogle Scholar
  50. 50.
    Post, J., van Deenen, N., Fricke, J., Kowalski, N., Wurbs, D., Schaller, H., Eisenreich, W., Huber, C., Twyman, R.M., Prufer, D., and Schulze Gronover, C., Plant Physiol., 2012, vol. 158, pp. 1406–1417.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Harrison, K.D., Park, E.J., Gao, N., Kuo, A., Rush, J.S., Waechter, C.J., Lehrman, M.A., and Sessa, W.C., EMBO J., 2011, vol. 30, pp. 2490–2500.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kharel, Y. and Koyama, T., Nature Prod. Rep., 2003, vol. 20, pp. 111–118.CrossRefGoogle Scholar
  53. 53.
    Epping, J., van Deenen, N., Niephaus, E., Stolze, A., Fricke, J., Huber, C., Eisenreich, W., Twyman, R., Prufer, D., and Gronover, C.S., Nature Plants, 2015, vol. 1, p. 15048.CrossRefGoogle Scholar
  54. 54.
    Park, E.J., Grabinska, K.A., Guan, Z., Stranecky, V., Hartmannova, H., Hodanova, K., Baresova, V., Sovova, J., Jozsef, L., Ondruskova, N., Hansikova, H., Honzik, T., Zeman, J., Hulkova, H., Wen, R., Kmoch, S., and Sessa, W.C., Cell Metab., 2014, vol. 20, pp. 448–457.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Grabinska, K.A., Cui, J., Chatterjee, A., Guan, Z., Raetz, C.R., Robbins, P.W., and Samuelson, J., Glycobiology, 2010, vol. 20, pp. 824–832.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Dennis, M.S. and Light, D.R., J. Biol. Chem., 1989, vol. 264, pp. 18608–18617.PubMedGoogle Scholar
  57. 57.
    Kush, A., Goyvaerts, E., Chye, M.L., and Chua, N.H., Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 1787–1790.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Han, K.H., Shin, D.H., Yang, J., Kim, I.J., Oh, S.K., and Chow, K.S., Tree Physiol., 2000, vol. 20, pp. 503–510.CrossRefPubMedGoogle Scholar
  59. 59.
    Chow, K.S., Wan, K.L., Isa, M.N., Bahari, A., Tan, S.H., Harikrishna, K., and Yeang, H.Y., J. Exp. Bot., 2007, vol. 58, pp. 2429–2440.CrossRefPubMedGoogle Scholar
  60. 60.
    Oh, S.K., Kang, H., Shin, D.H., Yang, J., Chow, K.S., Yeang, H.Y., Wagner, B., Breiteneder, H., and Han, K.H., J. Biol. Chem., 1999, vol. 274, pp. 17132–17138.CrossRefPubMedGoogle Scholar
  61. 61.
    Yeang, H.Y., Ward, M.A., Zamri, A.S., Dennis, M.S., and Light, D.R., Allergy, 1998, vol. 53, pp. 513–519.CrossRefPubMedGoogle Scholar
  62. 62.
    Wahler, D., Gronover, C.S., Richter, C., Foucu, F., Twyman, R.M., Moerschbacher, B.M., Fischer, R., Muth, J., and Prufer, D., Plant Physiol., 2009, vol. 151, pp. 334–346.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schmidt, T., Hillebrand, A., Wurbs, D., Wahler, D., Lenders, M., Schulze Gronover, C., and Prufer, D., Plant Mol. Biol. Rep., 2009, vol. 28, pp. 277–284.CrossRefGoogle Scholar
  64. 64.
    Collins-Silva, J., Taban Nural, A., Skaggs, A., Scott, D., Hathwaik, U., Woolsey, R., Schegg K., McMahan, C., Whalen, M., Cornish, K., and Shintani, D., Phytochemistry, 2012, vol. 79, pp. 46–56.CrossRefPubMedGoogle Scholar
  65. 65.
    van den Ende, W., Michiels, A., van Wonterghem, D., Vergauwen, R., and van Laere, A., Plant Physiol., 2000, vol. 123, pp. 71–80.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    De Roover, J., van Laere, A., De Winter, M., Timmermans, J.W., and van den Ende, W., Physiol. Plant., 1999, vol. 106, pp. 28–34.CrossRefGoogle Scholar
  67. 67.
    Stolze, A., Wanke, A., van Deenen, N., Geyer, R., Prufer, D., and Gronover, C.S., Plant Biotechnol. J, 2017, vol. 15, pp. 740–753.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chappell, J., Wolf, F., Proulx, J., Cuellar, R., and Saunders, C., Plant Physiol., 1995, vol. 109, pp. 133–1343.CrossRefGoogle Scholar
  69. 69.
    Basson, M.E., Thorsness, M., and Rine, J., Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, p. 5563.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Conolly, J.D. and Hill, R.A., Dictionary of Terpenoids, New York: Chapman & Hall, 1992.Google Scholar
  71. 71.
    Woitek, S., Unkles, S.E., Kinghorn, J.R., and Tudzynski, B., Curr. Genet., 1997, vol. 31, pp. 38–47.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Amerik
    • 1
  • Yu. Tc. Martirosyan
    • 1
    • 2
  • I. V. Gachok
    • 1
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Institute of Agricultural BiotechnologyMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations