Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 210–216 | Cite as

Effect of Specific Cleavage of Immunoglobulin G by Plasmin on the Binding and Activation of Plasminogen

  • R. B. Aisina
  • L. I. Mukhametova
  • K. B. Gershkovich
  • V. N. Yakovlev
  • E. I. Goufman
  • N. B. Tikhonova
Article

Abstract

A method of ELISA for measuring the binding of different samples of immunoglobulin (IgG) and its fragments to human plasminogen (Pg) has been developed. Instead of plasminogen, the heavy chain of plasminogen (Pg-H) containing five ligand-binding kringle domains, immobilized on the surface of the plate, was used in this method as a detector. It was found that IgG treated with plasmin (IgGPm-t) binds to the immobilized Pg-H 2.84 times more strongly than intact IgG. Both IgG samples showed a weak nonspecific binding to the immobilized light chain of plasminogen (Pg-L). It was shown that 0.2 M L-lysine inhibits the binding of IgGPm-t and does not affect the nonspecific binding of intact IgG to the immobilized Pg-H, indicating the involvement of lysine-binding regions of Pg-H in binding to IgGPm-t. A preliminary treatment of IgG samples with carboxypeptidase В (CPB) inhibited the binding of IgGPm-t and did not affect the nonspecific binding of intact IgG to the immobilized Pg-H, which indicates a key role of the С-terminal lysine of IgGPm-t in the specific binding to the lysine-binding sites of Pg. The study of the effects of intact IgG and IgGPm-t on the rate of activation of Glu- and Lys-forms of Pg (Glu-Pg and Lys-Pg) by a tissue activator of Pg (tPA) and urokinase (uPA) in buffer showed that intact IgG completely inhibited the activation of Glu-Pg and Lys-Pg with both tPA and uPA. Presumably, the inhibitory effect of intact IgG is due to steric hindrances that it creates for protein–protein interactions of the activators with the zymogen. IgGPm-t accelerated the generation of plasmin from Pg. In this case, the stimulatory effect of IgGPm-t on the activation of Glu-Pg under the action of tPA was ∼25% higher than on the activation of Lys-Pg, which is explained by more significant conformational changes in the Glu-Pg molecule compared with the Lys-Pg molecule after their binding to IgGPm-t. The results suggest that the specific cleavage of IgG by plasmin may be one of the ways by which the plasminogen/plasmin system is involved in various physiological and pathological processes.

Keywords

plasminogen plasminogen activators plasmin immunoglobulin G binding activation 

Abbreviations

Alb

human albumin

AlbPm-t

human albumin treated with plasmin

6-AHA

6-aminohexanoic acid

uPA

two-chain urokinase

IgG

immunoglobulin G

IgGPm-t

IgG treated with plasmin

CPB

carboxypeptidase В

K

kringle domain

LBS

lysine-binding site

Pm

plasmin

Pg

plasminogen

Glu-Pg and Lys-Pg

Glu- and Lys-forms of plasminogen

NTP

N-terminal peptide

tPA

tissue activator of plasminogen

Pg-H and Pg-L

the heavy and light chains of plasmin(ogen)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ponting, C.P., Marshall, J.M., and Cederholm-Williams, S.A., Blood Coagul. Fibrinolysis, 1992, vol. 3, pp. 605–614.CrossRefPubMedGoogle Scholar
  2. 2.
    Aisina, R.B. and Mukhametova, L.I., Russ. J. Bioorg. Chem., 2014, vol. 40, pp. 590–605.CrossRefGoogle Scholar
  3. 3.
    Thorsen, S., Clemmensen, I., Sottrup Jensen, L., and Magnusson, S., Biochim. Biophys. Acta, 1981, vol. 668, pp. 377–387.CrossRefPubMedGoogle Scholar
  4. 4.
    Miles, L.A. and Parmer, R.J., Semin. Thromb. Hemost., 2013, vol. 39, pp. 329–337.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rijken, D.C. and Sakharov, D.V., Thromb. Res., 2001, vol. 103, pp. 41–49.CrossRefGoogle Scholar
  6. 6.
    Castellino, F.J. and Ploplis, V.A., Thromb. Haemost., 2005, vol. 93, pp. 647–654.PubMedGoogle Scholar
  7. 7.
    Ogiwara, K., Nogami, K., Nishiya, K., and Shima, M., Blood Coagul. Fibrinolysis, 2010, vol. 21, pp. 568–576.CrossRefPubMedGoogle Scholar
  8. 8.
    Pryzdial, E.L., Lavigne, N., Dupuis, N., and Kessler, G.E., J. Biol. Chem., 1999, vol. 274, pp. 8500–8505.CrossRefPubMedGoogle Scholar
  9. 9.
    Waisman, D.M., Plasminogen: Structure, Activation and Regulation, Waisman, D.M., Ed., New York: Springer, Kluwer Academic/Plenum Publishers, 2003.Google Scholar
  10. 10.
    Santala, A., Saarinen, J., Kovanen, P., and Kuusela, P., FEBS Lett., 1999, vol. 461, pp. 153–156.CrossRefPubMedGoogle Scholar
  11. 11.
    Law, R.H.P., Abu-Ssaydeh, D., and Whisstock, C., Curr. Opin. Struct. Biol., 2013, vol. 23, pp. 836–841.CrossRefPubMedGoogle Scholar
  12. 12.
    Wiman, B. and Collen, D., Nature, 1978, vol. 272, pp. 549–550.CrossRefPubMedGoogle Scholar
  13. 13.
    Radcliffe, R. and Heinze, T., Arch. Biochem. Biophys., 1981, vol. 211, pp. 750–761.CrossRefPubMedGoogle Scholar
  14. 14.
    Machovich, R. and Owen, W., Arch. Biochem. Biophys., 1977, vol. 344, pp. 343–349.CrossRefGoogle Scholar
  15. 15.
    Harpel, P.C., Sullivan, R., and Chang, T.-S., J. Biol. Chem., 1989, vol. 264, pp. 616–624.PubMedGoogle Scholar
  16. 16.
    Dano, K., Behrendt, N., Hoyer-Hansen, G., Johnsen, M., Lund, L.R., Ploug, M., and Romer, J., Thromb. Haemost., 2005, vol. 93, pp. 676–681.PubMedGoogle Scholar
  17. 17.
    Brezski, R.J. and Jordan, R.E., BioScience, 2010, vol. 2, pp. 212–220.Google Scholar
  18. 18.
    Gonzalez-Gronow, M., Cuchacovich, M., Grigg, D.M., and Pizzo, S.V., J. Mol. Med., 1996, vol. 74, pp. 463–469.CrossRefPubMedGoogle Scholar
  19. 19.
    Stefanescu, M., Szegli, G., Cremer, L., Zarma, L., Mazilu, E., Naghiu, M., Niculescu, D., Gaches, A., and Onu, A., Arch. Roum. Pathol. Exp. Microbiol., 1989, vol. 48, pp. 47–53.PubMedGoogle Scholar
  20. 20.
    Kozmin, Ya.D., Bliznyukov, O.P., Martynov, A.I., and Alekberova, Z.S., Immunologiya, 2004, vol. 25, pp. 56–62.Google Scholar
  21. 21.
    Goufman, E.I., Yakovlev, V.N., Tikhonova, N.B., Aisina, R.B., Yarygin, K.N., Mukhametova, L.I., Gershkovich, K.B., and Gulin, D.A., Bull. Experim. Biol. Med., 2015, vol. 158, pp. 493–496.CrossRefGoogle Scholar
  22. 22.
    Law, R.H., Caradoc-Davies, T., Cowieson, N., Horvath, A.J., Quek, A.J., et al., Cell Rep., 2012, vol. 1, pp. 185–190.CrossRefPubMedGoogle Scholar
  23. 23.
    Levashov, M.Yu., Aisina, R.B., Gershkovich, K.B., and Varfolomeyev, S.D., Biochemistry (Moscow), 2007, vol. 72, pp. 707–715.CrossRefGoogle Scholar
  24. 24.
    Laemmly, U.K., Nature, 1970, vol. 227, pp. 680–685.CrossRefGoogle Scholar
  25. 25.
    Aisina, R.B., Mukhametova, L.I., Gulin, D.A., Levashov, M.Y., Prisyazhnaya, N.V., Gershkovich, K.B., and Varfolomeyev, S.D., Biochemistry (Moscow), 2009, vol. 74, pp. 1104–1113.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. B. Aisina
    • 1
  • L. I. Mukhametova
    • 1
    • 2
  • K. B. Gershkovich
    • 3
  • V. N. Yakovlev
    • 4
  • E. I. Goufman
    • 5
  • N. B. Tikhonova
    • 5
  1. 1.Chemical FacultyMoscow State UniversityMoscowRussia
  2. 2.Bauman State Technical UniversityMoscowRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.OOO AngiogenMoscowRussia
  5. 5.Research Institute of Human MorphologyMoscowRussia

Personalised recommendations