Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 1–18 | Cite as

DNA Repair Enzymes as Promising Targets in Oncotherapy

  • A. L. Zakharenko
  • N. A. Lebedeva
  • O. I. Lavrik
Review Article


DNA repair is a complicated process that occurs due to a network of different pathways and mechanisms for correction of DNA damages during the normal DNA biosynthesis and under the influence of external and internal factors. The study of these mechanisms and their regulation is closely related to both diagnostics and the search for ways of treating various diseases, including oncological ones. Malignant neoplasms are one of the three most widespread diseases in the world, which unfortunately often become the reason for a lethal outcome. Traditional cancer therapy aims to the DNA damage in malignant cells, and its result depends on the efficiency of the repair systems. In many cancer cells, the individual DNA repair enzymes are overexpressed, which promotes the resistance of these tumors to the therapy. On the other hand, defects in the DNA repair systems in cancer cells allow researchers to find both appropriate biomarkers for diagnostics and targets for the development of the specific and effective therapy. Currently, DNA repair inhibitors are being actively developed in order to increase the sensitivity of the tumor cells to traditional chemotherapy. The principle of synthetic lethality is used to create cell-specific drugs and to improve the effectiveness of the treatment. In this review, we discuss the current state of research and prospects for the development of inhibitors for five important DNA repair enzymes.


Inhibitors of DNA repair enzymes poly (ADP-ribose) polymerase tyrosyl-DNA phosphodiesterase 1 DNA polymerase β apurinic/apyrimidinic endonuclease 1 



base excision repair


poly(ADP-ribose)polymerase 1/2




from BReast CAncer, tumor suppressor genes

BRCT domain

C-terminal BRCT1 domain that is found in cell cycle control proteins in response to DNA damage and is responsible for protein-protein interactions


from X-ray repair cross-complementing protein, complementation group protein, that provide the cell sensitivity to X-ray


from Phosphatase and TENsin homologue deleted on chromosome 10, phosphatase with double substrate specificity


tyrosyl-DNA-phosphodiesterase 1


topoisomerase 1


spinocerebellar ataxia with neuropathy


apurinic/apyrimidinic endonuclease 1, AP site, apurinic/apyrimidinic site


DNA polymerase β




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Negrini, S., Gorgoulis, V.G., and Halazonetis, T.D., Nat. Rev. Mol. Cell. Biol., 2010, vol. 11, pp. 220–228.PubMedCrossRefGoogle Scholar
  2. 2.
    Salk, J.J., Fox, E.J., and Loeb, L.A., Ann. Rev. Pathol., 2010, vol. 5, pp. 51–75.CrossRefGoogle Scholar
  3. 3.
    Hanahan, D. and Weinberg, R.A., Cell, 2011, vol. 144, pp. 646–674.PubMedCrossRefGoogle Scholar
  4. 4.
    Curtin, N.J., Br. J. Pharmacol., 2013, vol. 169, pp. 1745–1765.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hosoya, N. and Miyagawa, K., Cancer Sci., 2014, vol. 105, pp. 370–388.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sykora, P., Wilson, IIID.M., and Bohr, V.A., Mech. Ageing Dev., 2013, vol. 134, pp. 440–448.PubMedCrossRefGoogle Scholar
  7. 7.
    Virag, L. and Szabo, C., Pharmacol. Rev., 2002, vol. 54, pp. 375–429.PubMedCrossRefGoogle Scholar
  8. 8.
    Shukla, P.C., Singh, K.K., Yanagawa, B., Teoh, H., and Verma, S., Can. J. Cardiol., 2010, vol. 26, pp. 13A–16A.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G.G., Biochem. J., 1999, vol. 342, pp. 249–268.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Amé, J.C., Spenlehauer, C., and de Murcia, G., Bio-Essays, 2004, vol. 26, pp. 882–893.Google Scholar
  11. 11.
    Otto, H., Reche, P.A., Bazan, F., Dittmar, K., Haag, F., and Koch-Nolte, F., BMC Genomics, 2005, vol. 6, p. 139.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schreiber, V., Dantzer, F., Amé, J.C., and De Murcia, G., Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 517–528.PubMedCrossRefGoogle Scholar
  13. 13.
    Woodhouse, B.C. and Dianov, G.L., DNA Repair, 2008, vol. 7, pp. 1077–1086.PubMedCrossRefGoogle Scholar
  14. 14.
    Yelamos, J., Schreiber, V., and Dantzer, F., Trends Mol. Med., 2008, vol. 14, pp. 169–178.PubMedCrossRefGoogle Scholar
  15. 15.
    Javle, M. and Curtin, N.J., Br. J. Cancer, 2011, vol. 105, pp. 1114–1122.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chiarugi, A., Trends Pharmacol. Sci., 2002, vol. 23, pp. 122–129.PubMedCrossRefGoogle Scholar
  17. 17.
    Del, N.C., Xiao, Y., Rangell, L., Reichelt, M., and O’Brien, T., J. Biol. Chem., 2014, vol. 289, pp. 35182–35192.CrossRefGoogle Scholar
  18. 18.
    Andrabi, S.A., Umanah, G.K., Chang, C., Stevens, D.A., Karuppagounder, S.S., Gagne, J.P., Poirier, G.G., Dawson, V.L., and Dawson, T.M., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 10209–10214.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rouleau, M., Patel, A., Hendzel, M.J., Kaufmann, S.H., and Poirier, G.G., Nat. Rev. Cancer, 2010, vol. 10, pp. 293–301.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bixel, K. and Hays, J.L., Pharmgenomics Pers. Med., 2015, vol. 8, pp. 127–135.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rios, J. and Puhalla, S., Oncology (Williston Park), 2011, vol. 25, pp. 1014–1025.Google Scholar
  22. 22.
    Gelmon, K.A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., Tonkin, K., Hirte, H., Huntsman, D., Clemons, M., Gilks, B., Yerushalmi, R., Macpherson, E., Carmichael, J., and Oza, A., Lancet. Oncol., 2011, vol. 12, pp. 852–861.PubMedCrossRefGoogle Scholar
  23. 23.
    Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T., Nature, 2005, vol. 434, pp. 913–917.PubMedCrossRefGoogle Scholar
  24. 24.
    Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., Martin, N.M., Jackson, S.P., Smith, G.C., and Ashworth, A., Nature, 2005, vol. 434, pp. 917–921.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferraris, D.V., J. Med. Chem., 2010, vol. 53, pp. 4561–4584.PubMedCrossRefGoogle Scholar
  26. 26.
    Curtin, N.J. and Szabo, C., Mol. Aspects Med., 2013, vol. 34, pp. 1217–1256.PubMedCrossRefGoogle Scholar
  27. 27.
    Purnel, M.R. and Whish, W.J.D., Biochem. J., 1980, vol. 185, pp. 775–777.CrossRefGoogle Scholar
  28. 28.
    Sims, J.L., Sikorski, G.W., Catino, D.M., Berger, S.J., and Berger, N.A., Biochemistry, 1982, vol. 21, pp. 1813–1821.PubMedCrossRefGoogle Scholar
  29. 29.
    Virag, L. and Szabo, C., Pharmacol. Rev., 2002, vol. 54, pp. 375-429.PubMedCrossRefGoogle Scholar
  30. 30.
    Milam, M.K. and Cleaver, E.J., Science, 1984, vol. 223, pp. 589–591.PubMedCrossRefGoogle Scholar
  31. 31.
    Lupo, B. and Trusolino, L., Biochim. Biophys. Acta, 2014, vol. 1846, pp. 201–215.PubMedGoogle Scholar
  32. 32.
    Steffen, J.D., Brody, J.R., Armen, R.S., and Pascal, J.M., Front. Oncol., 2013, vol. 3, p. 301.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cepeda, V., Fuertes, M.A., Castilla, J., Alonso, C., Quevedo, C., Soto, M., and Pérez, J.M., Recent Pat. Anticancer Drug. Discov., 2006, vol. 1, pp. 39–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Southan G.J. and Szabó C., Curr. Med. Chem., 2003, vol. 321–340.Google Scholar
  35. 35.
    Calabrese, C.R., Almassy, R., Barton, S., Batey, M.A., Calvert, A.H., Canan-Koch, S., Durkacz, B.W., Hostomsky, Z., Kumpf, R.A., Kyle, S., Li, J., Maegley, K., Newell, D.R., North, M., Notarianni, E., Stratford, I.J., Skalitzky, D., Thomas, H.D., Wang, L.-Z., Webber, S.E., Williams, K.J., and Curtin, N.J., J. Natl. Cancer Inst., 2004, vol. 96, pp. 56–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas, H.D., Calabrese, C.R., Batey, M.A., Canan, S., Hostomsky, Z., Kyle, S., Maegley, K.A., Newell, D.R., Skalitzky, D., Wang, L.-Z., Webber, S.E., and Curtin, N.J., Mol. Cancer Ther., 2007, vol. 6, pp. 945–956.PubMedCrossRefGoogle Scholar
  37. 37.
    Madison, D.L., Stauffer, D., and Lundblad, J.R., DNA Repair, 2011, vol. 10, pp. 1003–1013.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Liu, X., Shi, Y., Maag, D.X., Palma, J.P., Patterson, M.J., Ellis, P.A., Surber, B.W., Ready, D.B., Soni, N.B., Ladror, U.S., Xu, A.J., Iyer, R., Harlan, J.E., Solomon, L.R., Donawho, C.K., Penning, T.D., Johnson, E.F., and Shoemaker, A.R., Clin. Cancer Res., 2012, vol. 18, pp. 510–523.PubMedCrossRefGoogle Scholar
  39. 39.
    Patel, A.G., De Lorenzo, S.B., Flatten, K.S., Poirier, G.G., and Kaufmann, S.H., Clin. Cancer Res., 2012, vol. 18, pp. 1655–1662.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cardnell, R.J., Feng, Y., Diao, L., Fan, Y.H., Masrorpour, F., Wang, J., Shen, Y., Mills, G.B., Minna, J.D., Heymach, J.V., and Byers, L.A., Clin. Cancer Res., 2013, vol. 19, pp. 6322–6328.PubMedCrossRefGoogle Scholar
  41. 41.
    Murai, J., Huang, S.Y., Renaud, A., Zhang, Y., Ji, J., Takeda, S., Morris, J., Teicher, B., Doroshow, J.H., and Pommier, Y., Mol. Cancer Ther., 2014, vol. 13, pp. 433–443.PubMedCrossRefGoogle Scholar
  42. 42.
    Shen, Y., Rehman, F.L., Feng, Y., Boshuizen, J., Bajrami, I., Elliott, R., Wang, B., Lord, C.J., Post, L.E., and Ashworth, A., Clin. Cancer Res., 2013, vol. 19, pp. 5003–5015.PubMedCrossRefGoogle Scholar
  43. 43.
    Murai, J., Huang, S.Y., Das, B.B., Renaud, A., Zhang, Y., Doroshow, J.H., Ji, J., Takeda, S., and Pommier, Y., Cancer Res., 2012, vol. 72, pp. 5588–5599.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Murai, J. and Pommier, Y., in PARP inhibitors for Cancer Therapy, Curtin, N. and Sharma, R., Eds., Springer International Publishing, 2015, pp. 261–274.Google Scholar
  45. 45.
    Efremova, A.S., Zakharenko, A.L., Shram, S.I., Kulikova, I.V., Drenichev, M.S., Sukhanova, M.V., Khodyreva, S.N., Myasoedov, N.F., Lavrik, O.I., and Mikhailov, S.N., Nucleos. Nucleot. Nucl. Acids, 2013, vol. 32, pp. 510–528.CrossRefGoogle Scholar
  46. 46.
    Krishnakumar, R. and Kraus, W.L., Mol. Cell, 2010, vol. 39, pp. 8–24.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yelamos, J., Farres, J., Llacuna, L., Ampurdanes, C., and Martin-Caballero, J., Am. J. Cancer Res., 2011, vol. 1, pp. 328–346.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Antolin, A.A. and Mestres, J., Oncotarget, 2014, vol. 5, pp. 3023–3028.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Passeri, D., Camaioni, E., Liscio, P., Sabbatini, P., Ferri, M., Carotti, A., Giacchè, N., Pellicciari, R., Gioiello, A., and Macchiarulo, A., ChemMedChem, 2016, vol. 11, pp. 1219–1226.PubMedCrossRefGoogle Scholar
  50. 50.
    Papeo, G., Posteri, H., Borghi, D., Busel, A.A., Caprera, F., Casale, E., Ciomei, M., Cirla, A., Corti, E., D’Anello, M., Fasolini, M., Forte, B., Galvani, A., Isacchi, A., Khvat, A., Krasavin, M.Y., Lupi, R., Orsini, P., Perego, R., Pesenti, E., Pezzetta, D., Rainoldi, S., Riccardi-Sirtori, F., Scolaro, A., Sola, F., Zuccotto, F., Felder, E.R., Donati, D., and Montagnoli, A., J. Med. Chem., 2015, vol. 58, pp. 6875–6898.PubMedCrossRefGoogle Scholar
  51. 51.
    Na, Z., Peng, B., Ng, S., Pan, S., Lee, J.S., Shen, H.M., and Yao, S.Q., Angew. Chem. Int. Ed Engl., 2015, vol. 54, pp. 2515–2519.PubMedCrossRefGoogle Scholar
  52. 52.
    Amé, J.-C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller, S., Huger, T., de Murcia, J.M., and de Murcia, G., J. Biol. Chem., 1999, vol. 274, pp. 17860–17868.PubMedCrossRefGoogle Scholar
  53. 53.
    de Murcia, J.M., Ricoul, M., Tartier, L., Niedergang, C., Huber, A., Dantzer, F., Schreiber, V., Amé, J.-C., Dierich, A., LeMeur, M., Sabatier, L., Chambon, P., and de Murcia, G., EMBO J., 2003, vol. 22, pp. 2255–2263.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schreiber, V., Amé, J.-C., Dollé, P., Schultz, I., Rinaldi, B., Fraulob, V., De Murcia, J.M., and De Murcia, G., J. Biol. Chem., 2002, vol. 277, pp. 23028–23036.PubMedCrossRefGoogle Scholar
  55. 55.
    Trucco, C., Oliver, F.J., de Murcia, G., and de Murcia, J.M., Nucleic Acids Res., 1998, vol. 26, pp. 2644–2649.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mortusewicz, O., Amé, J.-C., Schreiber, V., and Leonhardt, H., Nucleic Acids Res., 2007, vol. 35, pp. 7665–7675.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Oliver, A.W., Ame, J.C., Roe, S.M., Good, V., de Murcia, G., and Pearl, L.H., Nucleic Acids Res., 2004, vol. 32, pp. 456–464.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hottiger, M.O., Mol. Aspects Med., 2013, vol. 34, pp. 1109–1123.PubMedCrossRefGoogle Scholar
  59. 59.
    Dulaney, C., Marcrom, S., Stanley, J., and Yang, E.S., Semin. Cell Dev. Biol., 2017, vol. 63, pp. 144–153.PubMedCrossRefGoogle Scholar
  60. 60.
    Iwashita, A., Hattori, K., Yamamoto, H., Ishida, J., Kido, Y., Kamijo, K., Murano, K., Miyake, H., Kinoshita, T., Warizaya, M., Ohkubo, M., Matsuoka, N., and Mutoh, S., FEBS Lett., 2005, vol. 579, pp. 1389–1393.PubMedCrossRefGoogle Scholar
  61. 61.
    Pellicciari, R., Camaioni, E., Costantino, G., Formentini, L., Sabbatini, P., Venturoni, F., Eren, G., Bellocchi, D., Chiarugi, A., and Moroni, F., ChemMedChem, 2008, vol. 3, pp. 914–923.PubMedCrossRefGoogle Scholar
  62. 62.
    Sunderland, P.T., Dhami, A., Mahon, M.F., Jones, L.A., Tully, S.R., Lloyd, M.D., Thompson, A.S., Javaid, H., Martin, N.M., and Threadgill, M.D., Org. Biomol. Chem., 2011, vol. 9, pp. 881–891.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu, Z., Jin, J., Xue, N., Song, X., and Chen, X., Anal. Biochem., 2014, vol. 449, pp. 188–194.PubMedCrossRefGoogle Scholar
  64. 64.
    Cortes, LedesmaF., El Khamisy, S.F., Zuma, M.C., Osborn, K., and Caldecott, K.W., Nature, 2009, vol. 461, pp. 674–678.CrossRefGoogle Scholar
  65. 65.
    Interthal, H., Pouliott, J.J., and Champoux, J.J., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 12009–12014.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rass, U., Ahel, I., and West, S.C., Cell, 2007, vol. 130, pp. 991–1004.PubMedCrossRefGoogle Scholar
  67. 67.
    Dexheimer, T.S., Antony, S., Marchand, C., and Pommier, Y., Anticancer Agents Med. Chem., 2008, vol. 8, pp. 381–389.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ben Hassine, S. and Arcangioli, B., EMBO J., 2009, vol. 28, pp. 632–640.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Povirk, L.F., ISRN Mol. Biol., 2012, pp. 1–16.Google Scholar
  70. 70.
    Vance, J.R. and Wilson, T.E., J. Biol. Chem., 2001, vol. 276, pp. 15073–15081.PubMedCrossRefGoogle Scholar
  71. 71.
    Pommier, Y., Nat. Rev. Cancer, 2006, vol. 6, pp. 789–802.PubMedCrossRefGoogle Scholar
  72. 72.
    Pommier, Y., Leo, E., Zhang, H., and Marchand, C., Chem. Biol., 2010, vol. 17, pp. 421–433.PubMedCrossRefGoogle Scholar
  73. 73.
    Beretta, G.L., Cossa, G., Gatti, L., Zunino, F., and Perego, P., Curr. Med. Chem., 2010, vol. 17, pp. 1500–1508.PubMedCrossRefGoogle Scholar
  74. 74.
    Hirano, R., Interthal, H., Huang, C., Nakamura, T., Deguchi, K., Choi, K., Bhattacharjee, M.B., Arimura, K., Umehara, F., Izumo, S., Northrop, J.L., Salih, M.A., Inoue, K., Armstrong, D.L., Champoux, J.J., Takashima, H., and Boerkoel, C.F., EMBO J., 2007, vol. 26, pp. 4732–4743.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Katyal, S., Khamisy, S.F., Russell, H.R., Li, Y., Ju, L., Caldecott, K.W., and McKinnon, P.J., EMBO J., 2007, vol. 26, pp. 4720–4731.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Das, B.B., Antony, S., Gupta, S., Dexheimer, T.S., Redon, C.E., Garfield, S., Shiloh, Y., and Pommier, Y., EMBO J., 2009, vol. 28, pp. 3667–3680.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    El-Khamisy, S.F., Katyal, S., Patel, P., Ju, L., McKinnon, P.J., and Caldecott, K.W., DNA Repair, 2009, vol. 8, pp. 760–766.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Barthelmes, H.U., Habermeyer, M., Christensen, M.O., Mielke, C., Interthal, H., Pouliot, J.J., Boege, F., and Marko, D., J. Biol. Chem., 2004, vol. 279, pp. 55618–55625.PubMedCrossRefGoogle Scholar
  79. 79.
    Nivens, M.C., Felder, T., Galloway, A.H., Pena, M.M., Pouliot, J.J., and Spencer, H.T., Cancer Chemother. Pharmacol., 2004, vol. 53, pp. 107–115.PubMedCrossRefGoogle Scholar
  80. 80.
    Alagoz, M., Wells, O.S., and El-Khamisy, S.F., Nucleic Acid Res., 2014, vol. 42, pp. 3089–3103.PubMedCrossRefGoogle Scholar
  81. 81.
    Murai, J., Huang, S.Y., Das, B.B., Dexheimer, T.S., Takeda, S., and Pommier, Y., J. Biol. Chem., 2012, vol. 287, pp. 12848–12857.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Inamdar, K.V., Pouliot, J.J., Zhou, T., Lees-Miller, S.P., Rasouli-Nia, A., and Povirk, L.F., J. Biol. Chem., 2002, vol. 277, pp. 27162–27168.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhou, T., Lee, J.W., Tatavarthi, H., Lupski, J.R., Valerie, K., and Povirk, L.F., Nucleic Acids Res., 2005, vol. 33, pp. 289–297.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Das, B.B., Dexheimer, T.S., Maddali, K., and Pommier, Y., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 19790–19795.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Interthal, H., Chen, H.J., and Champoux, J.J., J. Biol. Chem., 2005, vol. 280, pp. 36518–6528.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Dexheimer, T.S., Stephen, A.G., Fivash, M.J., Fisher, R.J., and Pommier, Y., Nucleic Acids Res., 2010, vol. 38, pp. 2444–2452.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Huang, S.Y., Murai, J., Dalla, RosaI., Dexheimer, T.S., Naumova, A., Gmeiner, W.H., and Pommier, Y., Nucleic Acids Res., 2013, vol. 41, pp. 7793–7803.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Raymond, A.C., Rideout, M.C., Staker, B., Hjerrild, K., and Burgin, A.B., J. Mol. Biol., 2004, vol. 338, pp. 895–906.PubMedCrossRefGoogle Scholar
  89. 89.
    Rideout, M.C., Raymond, A.C., and Burgin, A.B., Nucleic Acids Res., 2004, vol. 32, pp. 4657–4664.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Antony, S., Marchand, C., Stephen, A.G., Thibaut, L., Agama, K.K., Fisher, R.J., and Pommier, Y., Nucleic Acids Res., 2007, vol. 35, pp. 4474–4484.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Nguyen, T.X., Morrell, A., Conda-Sheridan, M., Marchand, C., Agama, K., Bermingam, A., Stephen, A.G., Chergui, A., Naumova, A., Fisher, R., O’Keefe, B.R., Pommier, Y., and Cushman, M., J. Med. Chem., 2012, vol. 55, pp. 4457–4478.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sirivolu, V.R., Vernekar, S.K., Marchand, C., Naumova, A., Chergui, A., Renaud, A., Stephen, A.G., Chen, F., Sham, Y.Y., Pommier, Y., and Wang, Z., J. Med. Chem., 2012, vol. 55, pp. 8671–8684.PubMedCrossRefGoogle Scholar
  93. 93.
    Zakharenko, A., Khomenko, T., Zhukova, S., Koval, O., Zakharova, O., Anarbaev, R., Lebedeva, N., Korchagina, D., Komarova, N., Vasiliev, V., Reynisson, J., Volcho, K., Salakhutdinov, N., and Lavrik, O., Bioorg. Med. Chem., 2015, vol. 23, pp. 2044–2052.PubMedCrossRefGoogle Scholar
  94. 94.
    Davies, D.R., Interthal, H., Champoux, J.J., and Hol, W.G., J. Mol. Biol., 2002, vol. 324, pp. 917–932.PubMedCrossRefGoogle Scholar
  95. 95.
    Davies, D.R., Interthal, H., Champoux, J.J., and Hol, W.G., Structure, 2002, vol. 10, pp. 237–248.PubMedCrossRefGoogle Scholar
  96. 96.
    Dexheimer, T.S., Gediya, L.K., Stephen, A.G., Weidlich, I., Antony, S., Marchand, C., Interthal, H., Nicklaus, M., Fisher, R.J., Njar, V.C., and Pommier, Y., J. Med. Chem., 2009, vol. 52, pp. 7122–7131.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Conda-Sheridan, M., Reddy, P.V.N., Morrell, A., Cobb, B.T., Marchand, C., Agama, K., Chergui, A., Renaud, A., Stephen, A.G., Bindu, L.K., Pommier, Y., and Cushman, M., J. Med. Chem., 2013, vol. 56, pp. 182–200.PubMedCrossRefGoogle Scholar
  98. 98.
    Marchand, C., Lea, W.A., Jadhav, A., Dexheimer, T.S., Austin, C.P., Inglese, J., Pommier, Y., and Simeonov, A., Mol. Cancer Ther., 2009, vol. 8, pp. 240–248.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Khomenko, T., Zakharenko, A., Odarchenko, T., Arabshahi, H.J., Sannikova, V., Zakharova, O., Korchagina, D., Reynisson, J., Volcho, K., Salakhutdinov, N., and Lavrik, O., Bioorg. Med. Chem., 2016, vol. 24, pp. 5573–5581.PubMedCrossRefGoogle Scholar
  100. 100.
    Zakharenko, A., Luzina, O., Koval, O., Nilov, D., Gushchina, I., Dyrkheeva, N., Svedas, V., Salakhutdinov, N., and Lavrik, O., J. Nat. Prod., 2016, vol. 79, p. 2961.PubMedCrossRefGoogle Scholar
  101. 101.
    Zakharenko, A.L., Ponomarev, K.Yu., Suslov, E.V., Korchagina, D.V., Volcho, K.P., Vasil’eva, I.A., Salakhutdinov, N.F., and Lavrik, O.I., Russ. J. Bioorg. Chem., 2015, vol. 41, no. 6, pp. 657–662.CrossRefGoogle Scholar
  102. 102.
    Zakharenko, A.L., Luzina, O.A., Sokolov, D.N., Zakharova, O.D., Rakhmanova, M.E., Chepanova, N.S., Dyrkheeva, N.S., Lavrik, O.I., and Salakhutdinov, N.F., Russ. J. Bioorg. Chem., 2017, vol. 43, no. 1, pp. 84–90.CrossRefGoogle Scholar
  103. 103.
    Liao, Z., Thibaut, L., Jobson, A., and Pommier, Y., Mol. Pharmacol., 2006, vol. 70, pp. 366–372.PubMedGoogle Scholar
  104. 104.
    Thomson, G.J., Hamilton, N.S., Hopkins, G.V., Waddell, I.D., Watson, A.J., and Ogilvie, D.J., Anal. Biochem., 2013, vol. 440, pp. 1–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Huang, S.N., Pommier, Y., and Marchand, C., Expert Opin. Ther. Pat., 2011, vol. 21, pp. 1285–1292.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nguyen, T.X., Abdelmalak, M., Marchand, C., Agama, K., Pommier, Y., and Cushman, M., J. Med. Chem., 2015, vol. 58, pp. 3188–3208.PubMedCrossRefGoogle Scholar
  107. 107.
    Lv, P.C., Agama, K., Marchand, C., Pommier, Y., and Cushman, M., J. Med. Chem., 2014, vol. 57, pp. 4324–4336.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang, P., Elsayed, M.S.A., Plescia, C.B., Ravji, A., Redon, C.E., Kiselev, E., Marchand, C., Zeleznik, O., Agama, K., Pommier, Y., and Cushman, M., J. Med. Chem., 2017, vol. 60, pp. 3275–3288.PubMedCrossRefGoogle Scholar
  109. 109.
    Davidson, B.S., Molinski, T.F., Barrows, L.R., and Ireland, C.M., J. Am. Chem. Soc., 1991, vol. 113, pp. 4709–4710.CrossRefGoogle Scholar
  110. 110.
    Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, pp. 3516–3604.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Comeaux, E.Q. and van Waardenburg, R.C., J. Biol. Chem., 2015, vol. 290, pp. 6203–6214.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Larsen, E., Meza, T.J., Kleppa, L., and Klungland, A., Mutat. Res., 2007, vol. 614, pp. 56–68.PubMedCrossRefGoogle Scholar
  113. 113.
    Gros, L., Saparbaev, M.K., and Laval, J., Oncogene, 2002, vol. 21, pp. 8905–8925.PubMedCrossRefGoogle Scholar
  114. 114.
    Burrows, C.J. and Muller, J.G., Chem. Rev., 1998, vol. 98, pp. 1109–1151.PubMedCrossRefGoogle Scholar
  115. 115.
    Lindahl, T. and Nyberg, B., Biochemistry, 1972, vol. 11, pp. 3610–3618.PubMedCrossRefGoogle Scholar
  116. 116.
    Boiteux, S. and Laval, J., Biochemistry, 1982, vol. 21, pp. 6746–6751.PubMedCrossRefGoogle Scholar
  117. 117.
    Demple, B. and Harrison, L., Annu. Rev. Biochem., 1994, vol. 63, pp. 915–948.PubMedCrossRefGoogle Scholar
  118. 118.
    Madhusudan, S., Smart, F., Shrimpton, P., Parsons, J.L., Gardiner, L., Houlbrook, S., Talbot, D.C., Hammonds, T., Freemont, P.A., Sternberg, M.J., Dianov, G.L., and Hickson, I.D., Nucleic Acids Res., 2005, vol. 33, pp. 4711–4724.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yang, S., Irani, K., Heffron, S.E., Jurnak, F., and Meyskens, F.L., Mol. Cancer. Ther., 2005, vol. 4, pp. 1923–1935.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu, L., Taverna, P., Whitacre, C.M., Chatterjee, S., and Gerson, S.L., Clin. Cancer Res., 1999, vol. 5, pp. 2908–2917.PubMedGoogle Scholar
  121. 121.
    Luo, M. and Kelley, M.R., Anticancer Res., 2004, vol. 24, pp. 2127–2134.PubMedGoogle Scholar
  122. 122.
    Chou, K.M. and Cheng, Y.C., J. Biol. Chem., 2003, vol. 278, pp. 18289–18296.PubMedCrossRefGoogle Scholar
  123. 123.
    Laev, S.S., Salakhutdinov, N.F., and Lavrik, O.I., Bioorg. Med. Chem., 2017, vol. 25, pp. 2531–2544.PubMedCrossRefGoogle Scholar
  124. 124.
    Nishi, T., Shimizu, N., Hiramoto, M., Sato, I., Yamaguchi, Y., Hasegawa, M., Aizawa, S., Tanaka, H., Kataoka, K., Watanabe, H., and Handa, H., J. Biol. Chem., 2002, vol. 277, pp. 44548–44556.PubMedCrossRefGoogle Scholar
  125. 125.
    Xanthoudakis, S. and Curran, T., EMBO J., 1992, vol. 11, pp. 653–665.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Huang, L.E., Arany, Z., Livingston, D.M., and Bunn, H.F., J. Biol. Chem., 1996, vol. 271, pp. 32253–32259.PubMedCrossRefGoogle Scholar
  127. 127.
    Huang, R.P. and Adamson, E.D., DNA Cell Biol., 1993, vol. 12, pp. 265–273.PubMedCrossRefGoogle Scholar
  128. 128.
    Pines, A., Bivi, N., Romanello, M., Damante, G., Kelley, M.R., Adamson, E.D., D’Andrea, P., Quadrifoglio, F., Moro, L., and Tell, G., Free Radic. Res., 2005, vol. 39, pp. 269–281.PubMedCrossRefGoogle Scholar
  129. 129.
    Gaiddon, C., Moorthy, N.C., and Prives, C., EMBO J., 1999, vol. 18, pp. 5609–5621.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gray, M.J., Zhang, J., Ellis, L.M., Semenza, G.L., Evans, D.B., Watowich, S.S., and Gallick, G.E., Oncogene, 2005, vol. 24, pp. 3110–3120.PubMedCrossRefGoogle Scholar
  131. 131.
    Zou, G.M. and Maitra, A., Mol. Cancer Ther., 2008, vol. 7, pp. 2012–2021.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Jayaraman, L., Murthy, K.G., Zhu, C., Curran, T., Xanthoudakis, S., and Prives, C., Genes Dev., 1997, vol. 11, pp. 558–570.PubMedCrossRefGoogle Scholar
  133. 133.
    Jiang, S., Zhu, L., Tang, H., Zhang, M., Chen, Z., Fei, J., Han, B., and Zou, G.M., Int. J. Oncol., 2015, vol. 47, pp. 610–620.PubMedCrossRefGoogle Scholar
  134. 134.
    Cardoso, A.A., Jiang, Y., Luo, M., Reed, A.M., Shahda, S., He, Y., Maitra, A., Kelley, M.R., and Fishel, M.L., PLoS ONE, 2012, vol. 7, p. e47462.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Guerreiro, P.S., Corvacho, E., Costa, J.G., Saraiva, N., Fernandes, A.S., Castro, M., Miranda, J.P., and Oliveira, N.G., Chem. Biol. Drug. Des., 2017. doi [Epub ahead of print] doi 10.1111/cbdd.12979Google Scholar
  136. 136.
    Zmudzka, B.Z., Fornace, A.J., Collins, J., and Wilson, S.H., Nucleic Acids Res., 1988, vol. 16, pp. 9589–9596.CrossRefGoogle Scholar
  137. 137.
    Kunkel, T.A., J. Biol. Chem., 1986, vol. 261, pp. 13581–13587.PubMedGoogle Scholar
  138. 138.
    Gomi, A., Shinoda, S., Sakai, R., Hirai, H., Ozawa, K., and Masuzawa, T., Biochem. Biophys. Res. Commun., 1996, vol. 227, pp. 558–563.PubMedCrossRefGoogle Scholar
  139. 139.
    Scanlon, K.J., Kashani-Sabet, M., and Miyachi, H., Cancer Invest., 1989, vol. 7, pp. 581–587.PubMedCrossRefGoogle Scholar
  140. 140.
    Horton, J.K., Watson, M., Stefanick, D.F., Shaughnessy, D.T., Taylor, J.A., and Wilson, S.H., Cell Res., 2008, vol. 18, pp. 48–63.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Wilson, D.M., 3rd and Barsky, D., Mutat. Res., 2001, vol. 485, pp. 283–307.PubMedCrossRefGoogle Scholar
  142. 142.
    Horton, J.K., Prasad, R., Hou, E., and Wilson, S.H., J. Biol. Chem., 2000, vol. 275, pp. 2211–2218.PubMedCrossRefGoogle Scholar
  143. 143.
    Srivastava, D.K., Berg, B.J., Prasad, R., Molina, J.T., Beard, W.A., Tomkinson, A.E., and Wilson, S.H., J. Biol. Chem., 1998, vol. 273, pp. 21203–21209.PubMedCrossRefGoogle Scholar
  144. 144.
    Berdis, A.J., Biochemistry, 2008, vol. 47, pp. 8253–8260.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Beard, W.A., Shock, D.D., Batra, V.K., Pedersen, L.C., and Wilson, S.H., J. Biol. Chem., 2009, vol. 284, pp. 31680–31689.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Devadoss, B., Lee, I., and Berdis, A.J., Biochemistry, 2007, vol. 46, pp. 13752–13761.PubMedCrossRefGoogle Scholar
  147. 147.
    Spence, R.A., Kati, W.M., Anderson, K.S., and Johnson, K.A., Science, 1995, vol. 267, pp. 988–993.PubMedCrossRefGoogle Scholar
  148. 148.
    Casado, J.L., Hertogs, K., Ruiz, L., Dronda, F., Van Cauwenberge, A., Arno, A., Garcia-Arata, I., Bloor, S., Bonjoch, A., Blazquez, J., Clotet, B., and Larder, B., AIDS, 2000, vol. 14, pp. 1–7.CrossRefGoogle Scholar
  149. 149.
    Mizushima, Y., Suzuki-Fukudome, H., Takeuchi, T., Takemoto, K., Kuriyama, I., Yoshida, H., Kamisuki, S., and Sugawara, F., Bioorg. Med. Chem., 2014, vol. 22, pp. 1070–1076.CrossRefGoogle Scholar
  150. 150.
    Jaiswal, A.S., Banerjee, S., Aneja, R., Sarkar, F.H., Ostrov, D.A., and Narayan, S., PLoS One, 2011, vol. 6, p. e16691.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kuriyama, I., Miyazaki, A., Tsuda, Y., Yoshida, H., and Mizushina, Y., Bioorg. Med. Chem., 2013, vol. 21, pp. 403–411.PubMedCrossRefGoogle Scholar
  152. 152.
    Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., and Guillemin, R., Science, 1973, vol. 179, pp. 77–79.PubMedCrossRefGoogle Scholar
  153. 153.
    Moreau, S.C., Murphy, W.A., and Coy, D.H., Drug. Dev. Res., 1991, vol. 22, pp. 79–93.CrossRefGoogle Scholar
  154. 154.
    Reichlin, S.N., Engl. J. Med., 1983, vol. 309, pp. 1495–1501.CrossRefGoogle Scholar
  155. 155.
    Keri, G., Erchegyi, J., Horvath, A., Mezo, I., Idei, M., Vantus, T., Balogh, A., Vadasz, Z., Bokonyi, G., Seprodi, J., Teplan, I., Csuka, O., Tejeda, M., Gaal, D., Szegedi, Z., Szende, B., Roze, C., Kalthoff, H., and Ullrich, A., Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 12513–12518.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kéri, G., Mezo, I., Vadász, Z., Horváth, A., Idei, M., Vantus, T., Balogh, A., Bokonyi, G., Bajor, T., Teplan, I., Tamás, J., Mak, M., Horváth, J., and Csuka, O., Pept. Res., 1993, vol. 6, pp. 281–288.PubMedGoogle Scholar
  157. 157.
    Miyazaki, A., Tsuda, Y., Fukushima, S., Yokoi, T., Vantus, T., Bokonyi, G., Szabo, E., Horvath, A., Keri, G., and Okada, Y., J. Med. Chem., 2008, vol. 51, pp. 5121–5124.PubMedCrossRefGoogle Scholar
  158. 158.
    Arian, D., Hedayati, M., Zhou, H., Bilis, Z., Chen, K., DeWeese, T.L., and Greenberg, M.M., J. Am. Chem. Soc., 2014, vol. 136, pp. 3176–3183.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Jones, S., Zhang, X., Parsons, D.W., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S.M., Fu, B., Lin, M.T., Calhoun, E.S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D.R., Hidalgo, M., Leach, S.D., Klein, A.P., Jaffee, E.M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J.R., Kern, S.E., Hruban, R.H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V.E., and Kinzler, K.W., Science, 2008, vol. 321, pp. 1801–1806.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. L. Zakharenko
    • 1
  • N. A. Lebedeva
    • 1
  • O. I. Lavrik
    • 1
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations