Russian Journal of Bioorganic Chemistry

, Volume 43, Issue 2, pp 143–149 | Cite as

DNA sequence-specific ligands: XVI. Series of the DBP(n) fluorescent dimeric bisbenzimidazoles with 1,4-piperazine-containing linkers

  • V. S. Koval
  • A. A. Ivanov
  • V. I. Salyanov
  • A. A. Stomakhin
  • V. A. Oleinikov
  • A. L. Zhuze


A novel series of the DBP(n) fluorescent symmetric dimeric bisbenzimidazoles in which the bisbenzimidazole fragments were attached to an oligomeric linker with the 1,4-piperazine residue in its center were prepared. The DBP(n) molecules were distinguished by the number of methylene groups n (where n = 1, 2, 3, 4) in the linker. The DBP(n) synthesis was based on a condensation of the monomeric bisbenzimidazole (MB) with 1,4-piperazinedialkylcarbonic acids. The ability of the DBP(n) dimeric bisbenzimidazoles to form complexes with the double-stranded DNA was demonstrated by a complex of physicochemical methods, including spectroscopy in the visual UV-area, circular dichroism (CD), and fluorescence. The DBP(1–4) molecules were localized in the DNA minor groove by the CD method with the use of cholesteric liquid-crystalline dispersions (CLCD) of the double-stranded DNA. The DBP(n) dimeric bisbenzimidazoles were easily soluble in water, penetrated through cellular and nuclear membranes, and stained DNA in living cells distinct from the previously synthesized DB(n) series.


dimeric bisbenzimidazole DBP(ncomplexes with the double-stranded DNA DNA minorgroove binder fluorescence circular dichroism 



the double-stranded DNA


X-ray structural analysis


circular dichroism


the cholesteric liquid-crystalline dispersion


benzotriazolyl-1-oxy)tris(dimethylamino)-phosphonium hexafluorophosphate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivanov, A.A., Salyanov, V.I., and Zhuze, A.L., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 2, pp. 183–190.CrossRefGoogle Scholar
  2. 2.
    Latt, S.A., Annu. Rev. Biophys. Bioeng., 1976, vol. 5 P, pp. 1–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Teng, M.-K., Usman, N., Frederick, C.A., and Wang, A.H.-J., Nucleic Acids Res., 1988, vol. P, pp. 2671–2690.Google Scholar
  4. 4.
    Vega, M.C., Saez, I.G., Aymami, J., Eritja, R., Van der Marel, G.A., Van Boom, J.H., Rich, A., and Coll, M., Eur. J. Biochem., 1994, vol. 222, pp. 721–726.CrossRefPubMedGoogle Scholar
  5. 5.
    Chiang, S.-Y., Welch, J., Rauscher, F., III, and Beerman, T., Biochemistry, 1994, vol. 33, pp. 7033–7040.CrossRefPubMedGoogle Scholar
  6. 6.
    Chiang, S.-Y., Welch, J.J., Frank, R.J. III, and Beerman, T.A., J. Biol. Chem., 1996, vol. 271, pp. 23999–24004.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, A.Y., Yu, C., Gatto, B., and Liu, L.F., Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, pp. 8131–8135.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Woynarowski, J.M., McHugh, M., Sigmund, R.D., and Beerman, T.A., Mol. Pharmacol., 1989, vol. 35, pp. 177–182.PubMedGoogle Scholar
  9. 9.
    Soderlind, K.-J., Gorodetsky, B., Singh, A.K., Bachur, N.R., Miller, G.G., and Lown, J.W., Anti-Cancer Drug Design, 1999, vol. 14, pp. 19–36.PubMedGoogle Scholar
  10. 10.
    Lyubimova, N.V., Coutlas, P.G., Yuen, K., and Martin, R.F., Brit. J. Radiol., 2001, vol. 74, pp. 77–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Ivanov, A.A., Streltsov, S.A., Prikazchikova, T.A., Gottikh, M.B., and Zhuze, A.L., Russ. J. Bioorg. Chem., 2008, vol. 34, no. 2, pp. 261–264.CrossRefGoogle Scholar
  12. 12.
    Susova, O.Yu., Ivanov, A.A., Morales Ruiz, S.S., Lesovaya, E.A., Gromyko, A.V., Streltsov, S.A., and Zhuze, A.L., Biochemistry (Moscow), 2010, vol. 75, no. 6, pp. 695–701.CrossRefGoogle Scholar
  13. 13.
    Cherepanova, N.A., Ivanov, A.A., Maltseva, D.V., Minero, A.S., Gromyko, A.V., Streltsov, S.A., Zhuze, A.L., and Gromova, E.S., J. Enzyme Inhib. Med. Chem., 2011, vol. 26, pp. 295–300.CrossRefPubMedGoogle Scholar
  14. 14.
    Tunitskaya, V.L., Mukovnya, A.V., Ivanov, A.A., Gromyko, A.V., Ivanov, A.V., Streltsov, S.A., Zhuze, A.L., and Kochetkov, S.N., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 5331–5535.CrossRefPubMedGoogle Scholar
  15. 15.
    Popov, K.V., Egorova, E.I., Ivanov, A.A., Gromyko, A.V., Zhuze, A.L., Bol’sheva, N.L., Semenova, O.Yu., Muravenko, O.V., and Zelenin, A.V., Biol. Membr., 2008, vol. 25, pp. 173–180.Google Scholar
  16. 16.
    Ivanov, A.A., Salyanov, V.I., Streltsov, S.A., Cherepanova, N.A., Gromova, E.S., and Zhuze, A.L., Russ. J. Bioorg. Chem., 2011, vol. 37, no. 4, pp. 472–482.CrossRefGoogle Scholar
  17. 17.
    Pjura, P.E., Grzeskowiak, K., and Dickerson, R.E., J. Mol. Biol., 1987, vol. 197, pp. 257–271.CrossRefPubMedGoogle Scholar
  18. 18.
    Ivanov, A.A., Koval, V.S., Susova, O.Yu., Salyanov, V.I., Oleinikov, V.A., Stomakhin, A.A., Shalginskikh, N.A., Kvasha, M.A., Kirsanova, O.V., Gromova, E.S., and Zhuze, A.L., Bioorg. Med. Chem. Lett., 2015, vol. 25, pp. 2634–2638.CrossRefPubMedGoogle Scholar
  19. 19.
    Martin, R.F., Pardee, M., Kelly, D.P., and Mack, P.O.-L., Aust. J. Chem., 1986, vol. 39, pp. 373–381.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Koval
    • 1
  • A. A. Ivanov
    • 2
  • V. I. Salyanov
    • 1
  • A. A. Stomakhin
    • 1
  • V. A. Oleinikov
    • 3
  • A. L. Zhuze
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Blokhin Russian Cancer Research CenterMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations