Russian Journal of Bioorganic Chemistry

, Volume 42, Issue 6, pp 655–663 | Cite as

Biospecific nanoparticles for multiplex phosphorescence analysis (PHOSPHAN)

  • D. V. Paramonov
  • T. S. Kostryukova
  • T. A. Bychenkova
  • V. G. Pomelova
  • N. S. Osin


We have developed a technology for the production of polymeric nanoparticles containing the incorporated phosphorescent label (europium ions–naphthoyltrifluoroacetone complexes) and streptavidin that is covalently bound on the surface. The aggregation-stable biospecific nanoparticles (40–60 nm in diameter) include up to 2000 molecular tags/particle and retain biological activity and stable phosphorescence for at least 20 months. They can be used in phosphorescence analysis (PHOSPHANTM)-based biochip technology as an effective detector system to record phosphorescence from microzones (microarrays) printed on the well bottoms of standard polystyrene microplates. The creation of a dense monolayer on the surface of a microzone requires up to 108 particles/microarray, or 109 particles/mm2 of area; this is in good agreement with theoretical estimates. The detection limit is as low as 300–400 phosphorescent nanoparticles per a microzone with an area of ~0.1 mm2. It has been demonstrated in the model of thyroid stimulating hormone (TSH) detection in filter paper dried blood that the newly developed detector system is five times more sensitive than the conventional methods of multiplex PHOSPHAN (with Pt-coproporphyrin phosphorescent label) and lanthanide immune fluoroassay (with fluorescent Eu3+ chelate complexes registered in the enhancement solution). The sensitivity of phosphorescent nanoparticle-based detector system is as low as 6.8 × 105 molecules/1.5 μL sample, which corresponds to a TSH concentration of 1.5 × 10–14 M.


nanoparticles phosphorescence analysis (PHOSPHAN) microarrays time-resolved luminescence europium complexes Pt coproporphyrin thyroid-stimulating hormone (TSH) 



bovine serum albumin




metacrylic acid


2-naphthoyl trifluoroacetone


phosphorescence analysis




sodium dodecyl sulfate


trioctylphosphine oxide


time-resolved fluoroimmunoassay


thyroid-stimulating hormone


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osin, N.S., Pomelova, V.G., Sokolov, A.S., Bychenkova, T.A., Bekman, N.I., Sharafudinova, T.Yu., Asliyan, S.K., Ivanovskaya, N.P., Laricheva, S.Yu., and Kanaeva, T.A, Vestnik RAMN, 2007, no. 12, pp. 3–10.Google Scholar
  2. 2.
    Osin, N.S. and Pomelova, V.G., Frontiers in Research. National Institute of Allergy and Infectious Diseases, NIH, Georgiev, V.St., Western, K.A., and McGowan, J.J., Eds., Totowa, NJ: Humana Press, 2008, pp. 233–240.Google Scholar
  3. 3.
    Marin, S.J., Merrell, M., Marin, S.J., Merrell, M., and McMillin, G.A., J. Analyt. Toxicol., 2011, vol. 35, no. 1, pp. 40–45.CrossRefGoogle Scholar
  4. 4.
    Troyan, S.L., Kianzad, V., Gibbs-Strauss, S.L., Gioux, S., Matsui, A., Oketokoun, R., Ngo, L., Khamene, A., Azar, F., and Frangioni, J.V, Ann. Surg. Oncol., 2009, vol. 16, no. 10, pp. 2943–2952.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stafford, P., Halperin, R., Legutki, J.B., Magee, D.M., Galgiani, J., and Johnston, S.A, Mol. Cell Proteomics, 2012, vol. 11, no. 4, p. M111.011593.Google Scholar
  6. 6.
    Pavkovica, M., Riefkeb, B., Gutberletc, K., Raschkeb, M., and Ellinger-Ziegelbauer, H., J. Pharmacol. Toxicol. Methods, 2014, vol. 69, no. 2, pp. 196–204.CrossRefGoogle Scholar
  7. 7.
    Pomelova, V.G., Korenberg, E.I., Kuznetsova, T.I., Bychenkova, T.A., Bekman, N.I., and Osin, N.S., PLoS ONE, 2015, vol. 10, no. 7, pp. 1–14. doi 10.1371/journal.pone.0130048CrossRefGoogle Scholar
  8. 8.
    Bekman, N.I., Laricheva, S.Yu., Bychenkova, T.A., Pomelova, V.G., and Osin, N.S, Klin. Lab. Diagn., 2015, no. 5, pp. 23–26.Google Scholar
  9. 9.
    Catalogue of Bioscience (Tianjin) Biotechnology Co., Ltd. Scholar
  10. 10.
    Catalogue of Medisensor, Inc. Scholar
  11. 11.
    Catalogue of Lumigenex, Co. LTD. Scholar
  12. 12.
    Härmä, H., Soukka, T., Lönnberg, S., Paukkunen, J., Tarkkinen, P., and Lövgren, T, Luminescence, 2000, vol. 15, no. 6, pp. 351–355.CrossRefPubMedGoogle Scholar
  13. 13.
    Ruckenstein, E, Adv. Polymer Sci., 1997, vol. 127, pp. 1–58.CrossRefGoogle Scholar
  14. 14.
    Yao-Hua van Berkel, K., Entry and the Kinetics of Emulsion Polymerisation, University of Canterbury Christchurch, New Zealand, June 2004.Google Scholar
  15. 15.
    Reaktsii v polimernykh sistemakh (Reactions in Polymeric Systems), Ivanchev, S.S., Ed., Leningrad: Khimiya, 1987.Google Scholar
  16. 16.
    Pavlyuchenko, V.N. and Ivanchev, S.S, Usp. Khim., 1981, vol. 50, no. 4, pp. 715–745.CrossRefGoogle Scholar
  17. 17.
    Lee, C.-F, Colloid Polym. Sci., 2002, vol. 280, pp. 116–123.CrossRefGoogle Scholar
  18. 18.
    Tang, J., Ding, T., Daniels, E.S., Dimonie, V.L., Klein, A., and El-Aasser, M.S., J. Appl. Polymer Sci., 2003, vol. 88, pp. 30–41.CrossRefGoogle Scholar
  19. 19.
    Men’shikova, A.Yu., Evseeva, T.G., Sirotkin, A.K., and Shabsel’s, B.M, Zh. Prikl. Khim., 2005, vol. 78, no. 6, pp. 1029–1033.Google Scholar
  20. 20.
    Graillat, C., Pichotb, C., and Guyov, A, Colloids Surf., 1991, vol. 56, pp. 189–200.CrossRefGoogle Scholar
  21. 21.
    Prokopov, N.I., Gritskova, I.A., Cherkasov, B.P., and Chalykh, A.E, Usp. Khim., 1996, vol. 65, no. 2, pp. 178–192.CrossRefGoogle Scholar
  22. 22.
    Men’shikova, A.Yu., Monodisperse polymeric particles in regulated surface structure, Doctoral (Chem.) Dissertation, St. Petersburg, 2008.Google Scholar
  23. 23.
    Abramzon, A.A., Bocharov, V.V., and Gaevoi, G.M., Poverkhnostno-aktivnye veshchestva: Spravochnik (Surfactants: A Handbook), Abramzon, A.A. and Gaevii, G.M., Eds., Leningrad: Khimiya, 1979.Google Scholar
  24. 24.
    Osin, N.S., Pomelova, V.G., Shlyakova, S.Yu., Bulatov, A.A., Osipova, T.A., Sigal, E.R., Koryazova, L.K., and Martynov, A.V, Biotekhnologiya, 1997, nos. 9–10, pp. 49–55.Google Scholar
  25. 25.
    Sunkara, H.B., Jethmalani, J.M., and Ford, W.T., J. Polymer Sci. Part A: Polymer Chem., 1994, vol. 32, pp. 1431–1435.CrossRefGoogle Scholar
  26. 26.
    Buechler, K.F., Noar, J.B., and Tadesse, L., Fluorescence energy transfer in particles, US Patent no. 6238931 B1, 2001.Google Scholar
  27. 27.
    Huhtinen, P., Kivela, M., Kuronen, O., Hagren, V., Takalo, H., Tenhu, H., Lovgren, T., and Harma, H, Anal. Chem., 2005, vol. 77, pp. 2643–2648.CrossRefPubMedGoogle Scholar
  28. 28.
    Lerner, D., Ricchiero, F., Richard, J., Teychenne, D., and Vaslin, S., Fluorescent latex containing at least two fluorochromes, process for producing it and application thereof, US Patnet no. 5716855, 1998.Google Scholar
  29. 29.
    Staros, J.V., Wright, R.W., and Swingle, D.M, Anal. Biochem., 1986, vol. 156, no. 1, pp. 220–222.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. V. Paramonov
    • 1
  • T. S. Kostryukova
    • 1
  • T. A. Bychenkova
    • 2
  • V. G. Pomelova
    • 2
  • N. S. Osin
    • 2
  1. 1.State Research Institute of Biological Instrument EngineeringMoscowRussia
  2. 2.ImmunoscreenMoscowRussia

Personalised recommendations