The Possibilities of GBIF Data Use in Ecological Research

Abstract—The Global Biodiversity Information Facility (GBIF) is the largest source of open scientific data on the biodiversity of Russian: over 4.3 million species occurrences became available through GBIF as of May 2020; the most abundant among them are data on vascular plant occurrence (over 1.9 million) and bird occurrence (over 900 thousand). The representativeness of data for other taxonomic groups and most of the regions of the country still remains low, although the amount of available information continues to grow owing to the mobilization of data from scientific collections and personal archives of researchers, as well as from citizen science projects, iNaturalist, and eBird. Data available through the GBIF portal are of great interest to ecologists who work with methods for modeling the spatial distribution of species. However, the existing data gaps for the Russian territory limit the possibilities of their reuse, and it is necessary to address additional sources of information to achieve adequate results.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Newman, M.E.J., Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 5200–5205.

    CAS  Article  Google Scholar 

  2. 2

    Grassle, J.F. and Stocks, K.I., A global ocean biogeographic information system (OBIS) for the census of marine life, Oceanography, 1999, vol. 12, no. 3, pp. 12–14.

    Article  Google Scholar 

  3. 3

    Wheeler, Q.D., What if GBIF?, BioScience, 2004, vol. 54, p. 717.[0718:WIG]2.0.CO;2

    Article  Google Scholar 

  4. 4

    Constable, H., Guralnick, R., Wieczorek, J., et al., VertNet: A new model for biodiversity data sharing, PLoS One, 2010, vol. 8, no. 2, E1000309.

    CAS  Article  Google Scholar 

  5. 5

    Burkhardt, U., Russell, D.J., Decker, P., et al., The Edaphobase project of GBIF-Germany: A new online soil-zoological data warehouse, Appl. Soil Ecol., 2014, vol. 83, pp. 3–12.

    Article  Google Scholar 

  6. 6

    Chandler, M., See, L., Copas, K., et al., Contribution of citizen science towards international biodiversity monitoring, Biol. Conserv., 2017, vol. 213, pp. 280–294.

    Article  Google Scholar 

  7. 7

    Ovaskainen, O., Meyke, E., Lo, K., et al., Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology, Sci. Data, 2020, vol. 7, article 47.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Filippova, N.V., Filippov, I.V., Shchigel’, D.S., et al., Biodiversity informatics: Global trends, current state in Russia, and prospects for development in the Khanty-Mansi Autonomous Okrug, Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, 2017, vol. 8, no. 2, pp. 46–56.

    Article  Google Scholar 

  9. 9

    Seregin, A.P., Digital herbarium of Moscow State University: The largest Russian biodiversity database, Biol. Bull., 2017, vol. 44, no. 6, pp. 584–590.

    Article  Google Scholar 

  10. 10

    Kalyakin, M.V., Results and prospects of collection works at the Moscow State University: Zoological collections, Zool. Issled., 2018, no. 20, pp. 52–59.

  11. 11

    Kovtonyuk, N.K., Han, I.V., and Gatilova, E.A., Digitization of vascular plant herbarium collections at the Central Siberian Botanical Garden, Novosibirsk, Russia, Skvortsovia, 2018, vol. 4, no. 3, pp. 100–111.

    Google Scholar 

  12. 12

    Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al., The fair guiding principles for scientific data management and stewardship, Sci. Data, 2016, vol. 3.

  13. 13

    Pennisi, E., Boom in digital collections makes a muddle of management, Science, 2005, vol. 308, pp. 187–189.

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Edwards, J.L., Research and societal benefits of the Global Biodiversity Information Facility, BioScience, 2004, vol. 54, pp. 485–486.[0486:RASBOT]2.0.CO;2

    Article  Google Scholar 

  15. 15

    Bisby, F.A., The quiet revolution: Biodiversity informatics and the Internet, Science, 2000, vol. 289, pp. 2309–2312.

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Yesson, C., Brewer, P.W., Sutton, T., et al., How global is the Global Biodiversity Information Facility?, PLoS One, 2007, vol. 2, no. 11, e1124.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hennekens, S., Dutch Vegetation Database, Wageningen University Research System (Alterra), 2018. Accessed March 22, 2020.

  18. 18

    GBIF Science Review 2017, Copenhagen: GBIF Secretariat, 2017.

  19. 19

    GBIF Science Review 2018, Copenhagen: GBIF Secretariat, 2018.

  20. 20

    GBIF Science Review 2019, Copenhagen: GBIF Secretariat, 2019.

  21. 21

    Sandanov, D.V., Modern approaches to modeling the diversity and spatial distribution of plant species: Prospects for their application in Russia, Vestn. Tomsk. Gos. Univ., Ser. Biol., 2019, no. 46.

  22. 22

    Righetti, D., Vogt, M., Gruber, N., et al., Global pattern of phytoplankton diversity driven by temperature and environmental variability, Sci. Adv., 2019, vol. 5, no. 5, eaau6253.

  23. 23

    Dyderski, M.K., Paź, S., Frelich, L.E., et al., How much does climate change threaten European forest tree species distributions?, Global Change Biol., 2018, vol. 24, pp. 1150–1163.

    Article  Google Scholar 

  24. 24

    Ribeiro, B.R., Sales, L.P., and Loyola, R., Strategies for mammal conservation under climate change in the Amazon, Biodivers. Conserv., 2018, vol. 27, pp. 1943–1959.

    Article  Google Scholar 

  25. 25

    Jarnevich, C.S., Young, N.E., Talbert, M., et al., Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information, Ecosphere, 2018, vol. 9, e02279.

    Article  Google Scholar 

  26. 26

    Cardador, L. and Blackburn, T.M., Human–habitat associations in the native distributions of alien bird species, J. Appl. Ecol., 2019, vol. 56, pp. 1189–1199.

    Article  Google Scholar 

  27. 27

    Moyes, C.L., Shearer, F.M., Huang, Z., et al., Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas, Parasites Vectors, 2016, vol. 9.

  28. 28

    Pigott, D.M., Millear, A.I., Earl, L., et al., Updates to the zoonotic niche map of Ebola virus disease in Africa, eLife, 2016, vol. 5, e16412.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Seregin, A., Moscow University Herbarium (MW), Version 1.124. Moscow: Moscow State Univ., 2020. Accessed on March 22, 2020.

  30. 30

    iNaturalist Research-grade Observations, 2020. Accessed via on March 22, 2020.

  31. 31

    Artemov, I. and Egorova, A., Locations of Plants on Dot Distribution Maps in the Flora of Siberia (Flora Sibiraea, 1987–1997). Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences. Accessed on March 22, 2020.

  32. 32

    Seregin, A.P., A Grid-based Database on Vascular Plant Distribution in the Meshchera National Park, Vladimir Oblast, Russia. Moscow State University, 2014. Accessed on January 22, 2019.

  33. 33

    Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., et al., European vegetation archive (EVA): An integrated database of European vegetation plots, Appl. Veg. Sci., 2016, vol. 19, pp. 173–180.

    Article  Google Scholar 

  34. 34

    Ukolov, I., Kalyakin, M., and Voltzit, O., RU-BIRDS.RU: Birds Observations Database from Russia and Neighboring Regions, Version 1.4. Zoological Museum, Moscow State University. Accessed on March 22, 2020.

  35. 35

    Levatich, T. and Padilla, F., EOD: eBird Observation Dataset. Cornell Laboratory of Ornithology, 2019. Accessed on March 22, 2020.

  36. 36

    Hagemeyer, W., Blair, M., and Loos, W., EBCC Atlas of European Breeding Birds, Version 1.3. European Bird Census Council (EBCC), 2016. Accessed on March 22, 2020.

  37. 37

    Petrosyan, V. and Kuzmin, S., Amphibians of the Former USSR, Version 1.11. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 2017. Accessed on March 22, 2020.

  38. 38

    Ivanova, N., Shashkov, M., and Buyvolov, Y., How much data do Russian biological collections contain?, in Information Technologies in the Research of Biodiversity, Abstr. Conf., Irkutsk: ISDCT SB RAS, 2018.

  39. 39

    GBIF Backbone Taxonomy. GBIF Secretariat, 2019. Accessed on March 22, 2020.

Download references

Author information



Corresponding author

Correspondence to N. V. Ivanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.V., Shashkov, M.P. The Possibilities of GBIF Data Use in Ecological Research. Russ J Ecol 52, 1–8 (2021).

Download citation


  • biodiversity informatics
  • FAIR data
  • GBIF
  • consolidated data analysis