Skip to main content
Log in

Geo-Profiling: beyond the Current Limits. A Preliminary Study of Mathematical Methods to Improve the Monitoring of Invasive Species

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The Geographic Profiling (GP) is a data analysis tool that has great potential. Presently, it is used only minimally, and is almost always used “as it is”, independently on other analysis or data processing methods. GP was initially created as a forensic tool, to find the origin of a series of events (crimes) done by a single actor. However, using this method in integration with others, it is possible to enlarge the opportunities of geographical data analysis. The promising results of this method in integration with others, even if some of them are quite well known methods since many years–and thus well tested–show a number of further possible applications. Here we treat data clustering and partitioning with Kmeans and Dbscan methods; space partitioning (Voronoi tessellation) and a method to assign weights to the events constituting the data set. The software used in this review was written in Python, was released under GPL license and is available on Bitbucket (https://bitbucket.org/ugosnt/al_and_ugo/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyerson, L.A. and Mooney, H.A., Invasive alien species in an era of globalization, Front. Ecol. Environ., 2007, vol. 5, no. 4, pp. 199–208.

    Article  Google Scholar 

  2. Cini, A., Anfora, G., Escudero-Colomar, L.A., Grassi, A., Santosuosso, U., Seljak, G., and Papini, A., Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe, J. Pest Sci., 2014, vol. 87, no. 4, pp. 559–566.

    Article  Google Scholar 

  3. Papini, A., Mosti, S., and Santosuosso, U., Tracking the origin of the invading Caulerpa (Caulerpales, Chlorophyta) with geographic profiling, a criminological technique for a killer alga, Biol. Invasions, 2013, vol. 15, no. 7, pp. 1613–1621.

    Article  Google Scholar 

  4. Santosuosso, U. and Papini, A., Methods for geographic profiling of biological invasions with multiple origin sites, Int. J. Environ. Sci. Technol., 2016, vol. 13, no. 8, pp. 2037–2044.

    Article  Google Scholar 

  5. Vitousek, P., D’Antonio, C.M., Loope, L., and Westbrooks, R., Biological invasions as global environmental change, Am. Sci., 1996, vol. 84, pp. 468–478.

    Google Scholar 

  6. Wilcover, D.S., Rothstein, D., Dubow, J., Phillips, A., and Losos, E., Quantifying threats to imperilled species in the United States, Bioscience, 1998, vol. 48, pp. 607–615.

    Article  Google Scholar 

  7. Strayer, D.L., Eviner, V.T., Jeschke, J.M., and Pace, M.L., Understanding the long-term effects of species invasions, Trends Ecol. Evol., 2006, vol. 21, pp. 645–651.

    Article  PubMed  Google Scholar 

  8. Stevenson, M.D., Rossmo, D.K., Knell, R.J., and Le Comber, S.C., Geographic profiling as a novel spatial tool for targeting the control of invasive species, Ecography, 2012, vol. 35, pp. 1–12.

    Article  Google Scholar 

  9. Colautti, R.I. and MacIsaac, H.J., A neutral terminology to define ‘invasive’ species, Divers. Distributions, 2004, vol. 10, no. 2, pp. 135–141.

    Article  Google Scholar 

  10. Betekhtina, A.A., Mukhaceva, T.A., Kovalev, S.Y., Gusev, A.P., and Veselkin, D.V., Abundance and diversity of arbuscular mycorrhizal fungi in invasive Solidago canadensis and indigenous S. virgaurea, Russ. J. Ecol., 2016, vol. 47, no. 6, pp. 575–579.

    Article  Google Scholar 

  11. Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P., and Thomas, M.B., Global threat to agriculture from invasive species, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 27, pp. 7575–7579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pimentel, D., Zuniga, R., and Morrison, D., Update on the environmental and economic costs associated with alien-invasive species in the United States, Ecol. Econ., 2005, vol. 52, no. 3, pp. 273–288.

    Article  Google Scholar 

  13. Kalinkina, D.S., Sushchuk, A.A., and Matveeva, E.M., Characteristics of soil nematode communities under conditions of woody plant introduction, Russ. J. Ecol., 2016, vol. 47, no. 5, pp. 473–479.

    Article  Google Scholar 

  14. Gallardo, B., Clavero, M., Sánchez, M.I., and Vilà, M., Global ecological impacts of invasive species in aquatic ecosystems, Global Change Biol., 2016, vol. 22, no. 1, pp. 151–163.

    Article  Google Scholar 

  15. Rossmo DK. A methodological model. Am. J. Crimin. Just., 1993, 172, 1–21.

    Google Scholar 

  16. Rossmo, D.K., Geographic Profiling, Boca Raton, FL: CRC Press, 2000.

    Google Scholar 

  17. Papini, A. and Santosuosso, U., Snow’s case revisited: New tool in geographic profiling of epidemiology, Braz. J. Infect. Dis., 2017, vol. 21, no. 2, pp. 112–115.

    Article  PubMed  Google Scholar 

  18. Le Comber, S.C., Rossmo, D.K., Hassan, A.N., Fuller, D.O., and Beier, J.C., Geographic profiling as a novel spatial tool for targeting infectious disease control, Int. J. Health Geogr., 2011, vol. 10, p. 35.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buscema, M., Grossi, E., Breda, M., and Jefferson, T., Outbreaks source: A new mathematical approach to identify their possible location, Physica A, 2009, vol. 388, pp. 4736–4762.

    Article  Google Scholar 

  20. Hulme, P.E., Trade, transport and trouble: Managing invasive species pathways in an era of globalization, J. Appl. Ecol., 2009, vol. 46, no. 1, pp. 10–18.

    Article  Google Scholar 

  21. Martin, R.A., Rossmo, D.K., and Hammerschlag, N., Hunting patterns and geographic profiling of white shark predation, J. Zool., 2009, vol. 279, pp. 111–118.

    Article  Google Scholar 

  22. Tryon, R.C., Cluster Analysis, New York: McGraw- Hill, 1939.

    Google Scholar 

  23. Huelsenbeck, J.P. and Ronquist, F., MrBayes: Bayesian inference of phylogenetic trees, Bioinformatics, 2001, vol. 17, pp. 754–755.

    Article  PubMed  CAS  Google Scholar 

  24. Huelsenbeck, J.P., Larget, B., Miller, R.E., and Ronquist, F., Potential applications and pitfalls of Bayesian Inference of phylogeny, Syst. Biol., 2002, vol. 51, no. 5, pp. 673–688.

    Article  PubMed  Google Scholar 

  25. Jain, A.K., Data clustering: 50 years beyond K-means, Pattern Recognit. Lett., 2010, vol. 31, no. 8, pp. 651–666.

    Article  Google Scholar 

  26. Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise, in Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, E. Simoudis, J. Han, and U. Fayyad, Eds., AAAI Press, 1996, pp. 226–231.

    Google Scholar 

  27. Eckes, T. and Orlik, P., An error variance approach to two-mode hierarchical clustering, J. Classification, 1993, vol. 10, no. 1, pp. 51–74.

    Article  Google Scholar 

  28. Gerig, G., Martin, J., Kikinis, R., Kübler, O., Shenton. M., and Jolesz, F.A., Automating segmentation of dual-echo MRhead data. Segmentation: specific applications, Lecture Notes Comput. Sci., 2005, vol. 511, 175–187.

    Article  Google Scholar 

  29. Rousseeuw, P.J., Silhouettes: A graphical Aid to the interpretation and validation of cluster analysis, Comput. Appl. Math., 1987, vol. 20, pp. 53–65.

    Article  Google Scholar 

  30. Snow, J., Snow on Cholera. A Reprint of Two Papers by John Snoe, MD, Together with a Biographical Memoir by B.W. Richardson, MD,and an Introduction by Wade Hampton Frost, New York, The Commonwealth Fund, 1936.

    Google Scholar 

  31. Canter, D., Coffey, T., Huntley, M., and Missen, C., Predicting serial killers’ home base using a decision support system, J. Quant. Criminol., 2000, vol. 16, pp. 457–478.

    Article  Google Scholar 

  32. O’Leary, M., A new mathematical technique for geographic profiling, in Proceedings of the NIJ Conference, Washington, DC, June 17–19, 2006.

    Google Scholar 

  33. Cox, D.R., The regression analysis of binary sequences (with discussion), J. R. Stat. Soc., Ser. B (Methodol.), 1958, vol. 20, no. 2, pp. 215–242.

    Google Scholar 

  34. Vanwalleghem, T., Van Den Eeckhaut, M., Poesen, J., Govers, G., and Deckers, J., Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: Application of rare event logistic regression, Geomorphology, 2008, vol. 95, pp. 504–517.

    Article  Google Scholar 

  35. King, G. and Zeng, L., Logistic regression in rare events data, Polit. Anal., 2001, vol. 9, no. 2, pp. 137–163.

    Article  Google Scholar 

  36. Edwards, T.C., Jr., Cutler, D.R., Zimmermann, N.E., Geiser, L., and Alegria, J., Model-based stratifications for enhancing the detection of rare ecological events, Ecology, 2005, vol. 86, no. 5, pp. 1081–1090.

    Article  Google Scholar 

  37. Ellison, A.M. and Agrawal, A.A., The statistics of rarity, Ecology, 2005, vol. 86, no. 5, pp. 1079–1080.

    Article  Google Scholar 

  38. Dixon, P.M., Ellison, A.M., and Gotelli, N.J., Improving the precision of estimates of the frequency of rare events, Ecology, 2005, vol. 86, no. 5, pp. 1114–1123.

    Article  Google Scholar 

  39. Wie, S.G., Li, L., Chen, Z.C., Lian, J.Y., Lin, G.J., Huang, Z.L., and Yin, Z.Y., Which models are appropriate for six subtropical forests: Species-area and species-abundance models, PLoS One, 2014, 9, no. 4, e95890. doi 10.1371/journal.pone.0095890

    Article  CAS  Google Scholar 

  40. Hüllermeier, E., Fuzzy methods in machine learning and data mining: Status and prospects, Fuzzy Sets Syst., 2005, vol. 156, no. 3, pp. 387–406.

    Article  Google Scholar 

  41. Aurenhammer, F., Voronoi diagrams: A Survey of a fundamental geometric data structure, ACM Comput. Surveys, 1991, vol. 23, no. 3, pp. 345–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Papini.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosuosso, U., Papini, A. Geo-Profiling: beyond the Current Limits. A Preliminary Study of Mathematical Methods to Improve the Monitoring of Invasive Species. Russ J Ecol 49, 362–370 (2018). https://doi.org/10.1134/S1067413618040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618040112

Keywords

Navigation