Skip to main content
Log in

Morphogenetic Effects of Drought and Nonselective Elimination in Population of Bank Vole (Clethrionomys glareolus) in Southern Taiga Subzone

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Methods of geometric morphometrics have been used to estimate the influence ratio of nonselective elimination and drought factors on variation in the shape and size of the mandible in the population of bank vole (Clethrionomys glareolus Schreb.) in the southern taiga subzone. Nonselective elimination of rodent populations for medical and sanitary purposes was carried out in a felling site located in a focus of hemorrhagic fever, in the spring of a climatically normal year and of a dry year. The summer samples of mature young of the year from control bank vole colonies and impact colonies (i.e., recovered after deratization) in adjacent years have been compared. The results show that drought, nonselective elimination, and the interaction of these factors have significant effects on the size and shape of the mandible. Changes in its shape under drought conditions are largely due to allometry. Morphogenetic effects of nonselective elimination are highly repeatable between climatically different years. A significantly higher level of within-group morphological disparity (MNND) of the undisturbed control cenopopulation in a dry year has been revealed, which indirectly indicates a stronger destabilization of morphogenesis upon exposure to the autecological factor. Every ecological factor contributes to the development of specific configurations of the mandible; i.e., it induces certain changes in morphogenesis in response to aut- and synecological effects and their combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayr, E., Animal Species and Evolution, Cambridge: Harvard Univ. Press, 1963. Translated under the title Zoologicheskii vid i evolyutsiya, Moscow: Mir, 1968.

    Book  Google Scholar 

  2. Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh: Ekologicheskie mekhanizmy evolyutsionnogo protsessa (Evolutionary Ecology of Animals: Ecological Mechanisms of the Evolutionary Process), Sverdlovsk: Ural. Fil. Akad. Nauk SSSR, 1969.

    Google Scholar 

  3. Nei, M., Maruyama, T., and Chakraborty, R., The bottleneck effect and variability in populations, Evolution, 1975, vol. 29, pp. 1–10.

    Article  PubMed  Google Scholar 

  4. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Patterns of Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  5. Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the Way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.

    Google Scholar 

  6. Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A., et al., Assessment of nonselective elimination effects in rodent communities by methods of geometric morphometrics, Russ. J. Ecol., 2016, vol. 47, no. 4, pp. 383–391.

    Article  Google Scholar 

  7. Semerikov, V.L., Semerikova, S.A., Polezhaeva, M.A., et al., Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): A range-wide analysis of cytoplasmic markers, Mol. Ecol., 2013, vol. 22, pp. 4958–4971.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, Y.S., Markov, N., Voloshina, I., et al., Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia, BMC Genet., 2015, vol. 16, no. 100, pp. 1–15.

    Google Scholar 

  9. Yablokov, A.V., Izmenchivost’ mlekopitayushchikh (Variation in Mammals), Moscow: Nauka, 1966.

    Google Scholar 

  10. Olenev, G.V., Population mechanisms of adaptation to extreme environmental factors: The example of bank vole, Zh. Obshch. Biol., 1981, no. 4, pp. 506–511.

    Google Scholar 

  11. Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.

    Article  Google Scholar 

  12. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.

    Google Scholar 

  13. Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.

    Article  PubMed  Google Scholar 

  14. Rohlf, F.J., TpsUtil, File Utility Program, Version 1.60, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013.

    Google Scholar 

  15. Rohlf, F.J., TpsDig, Digitize Landmarks and Outlines, Version 2.17, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013.

    Google Scholar 

  16. Rohlf, F.J., Shape statistics: Procrustes superimpositions and tangent spaces, J. Classification, 1999, vol. 16, pp. 197–223.

    Article  Google Scholar 

  17. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Dobrinskii., N.L, Chernov’s compensation principle and the effect of rodent community completeness on the variability of bank vole (Clethrionomys glareolus) population in the Middle Urals, Russ. J. Ecol., 2017, vol. 48, no. 2, pp. 161–169.

    Article  Google Scholar 

  18. Mitteroecker, P., Gunz, P., Windhage, S., and Schaefer, K., A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology, Hystrix, 2013, vol. 24, pp. 59–66.

    Google Scholar 

  19. Davis, J.C., Statistics and Data Analysis in Geology, New York: Wiley, 1986. Translated under the title Statisticheskii analiz dannykh v geologii, Moscow: Nedra, 1990, vol.2.

    Google Scholar 

  20. Hammer, O., New methods for the statistical analysis of point alignments, Comput. Geosci., 2009, vol. 35, pp. 659–666.

    Article  Google Scholar 

  21. Donnelly, K.P., Simulations to determine the variance and edge effect of total nearest-neighbour distances, in Simulation Methods in Archaeology, Hodder, I., Ed., Cambridge: Cambridge Univ. Press, 1978, pp. 91–95.

    Google Scholar 

  22. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no.1.

    Google Scholar 

  23. Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A., and Sineva, N.V., Aftereffects of muskrat introduction in Western Siberia: Morphological and functional aspects, Russ. J. Biol. Invasions, 2017, vol. 8, no. 1, pp. 1–9.

    Article  Google Scholar 

  24. Evdokimov, N.G., Analysis of mechanisms of abundance recovery in an artificially depleted population of rodents in a forest biocenosis, in Populyatsionnaya ekologiya i izmenchivost’ zhivotnykh (Animal Population Ecology and Variation), Sverdlovsk: Ural. Nauch. Tsentr Akad. Nauk SSSR, 1979, pp. 84–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vasil’ev.

Additional information

Original Russian Text © A.G. Vasil’ev, V.N. Bol’shakov, I.A. Vasil’eva, N.G. Evdokimov, N.V. Sineva, 2018, published in Ekologiya, 2018, No. 3, pp. 205–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A. et al. Morphogenetic Effects of Drought and Nonselective Elimination in Population of Bank Vole (Clethrionomys glareolus) in Southern Taiga Subzone. Russ J Ecol 49, 241–247 (2018). https://doi.org/10.1134/S1067413618030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618030104

Keywords

Navigation