Advertisement

Russian Journal of Ecology

, Volume 49, Issue 3, pp 209–217 | Cite as

Earlywood and Latewood Features of Pinus sylvestris in Semiarid Natural Zones of South Siberia

  • E. A. Babushkina
  • L. V. Belokopytova
  • T. V. Kostyakova
  • V. I. Kokova
Article

Abstract

Chronologies of the anatomical and integral parameters of the Scots pine (Pinus sylvestris L.) earlywood and latewood were investigated for two sites in the Minusinsk depression with different soil moisture conditions. Patterns of statistical characteristics and climatic responses of the chronologies were identified. Differences between sites were revealed in the cell diameter and wall thickness distributions. These differences are indicators of adapting pine wood structure to the moisture deficit.

Keywords

cell number cell radial diameter cell wall thickness earlywood latewood semiarid conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hughes, M.K., Dendroclimatology in high-resolution paleoclimatology, in Dendroclimatology: Progress and Prospects, Hughes, M.K., Swetnam, T.W., and Diaz, H.F., Eds., Dordrecht: Springer, 2011, pp. 17–34.CrossRefGoogle Scholar
  2. 2.
    Methods of Dendrochronology: Application in Environmental Sciences, Cook, E.R. and Kairiukstis, L.A., Eds., Dordrecht: Kluwer, 1990.Google Scholar
  3. 3.
    Fonti, P., von Arx, G., Garcia-Gonzalez, I., et al., Studying global change through investigation of the plastic responses of xylem anatomy in tree rings, New Phytol., 2010, no. 185, pp. 42–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Fritts, H.C., Tree Rings and Climate, London: Academic, 1976.Google Scholar
  5. 5.
    Vaganov, E.A., Hughes, M.K., and Shashkin, A.V., Growth Dynamics of Conifer Tree Rings: An Image of Past and Future Environments, Berlin: Springer-Verlag, 2006.Google Scholar
  6. 6.
    Vaganov, E.A., Anchukaitis, K.J., and Evans, M., How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics, in Dendroclimatology: Progress and Prospects, Hughes, M.K., Swetnam, T.W., and Diaz, H.F., Eds., Dordrecht: Springer, 2011, pp. 37–75.CrossRefGoogle Scholar
  7. 7.
    Panyushkina, I.P., Hughes, M.K., Vanganov, E.A., and Munro, M.A.R., Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi, Can. J. For. Res., 2003, vol. 33, pp. 1905–1914.CrossRefGoogle Scholar
  8. 8.
    Lachenbruch, B. and McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant, New Phytol., 2014, no. 204, pp. 747–764.CrossRefPubMedGoogle Scholar
  9. 9.
    Chenlemuge, T., Schuldt, B., Dulamsuren, C., et al., Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates, Trees, 2015, vol. 29, no. 3, pp. 623–636.CrossRefGoogle Scholar
  10. 10.
    Heres, A.M., Camarero, J.J., López, B.C., and Martínez-Vilalta, J., Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality, Trees, 2014, vol. 28, pp. 1737–1750.CrossRefGoogle Scholar
  11. 11.
    Allen, C.D., Macalady, A.K., Chenchouni, H., et al., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manage., 2010, vol. 259, pp. 660–684.CrossRefGoogle Scholar
  12. 12.
    Fonti, P. and Babushkina, E.A., Tracheid anatomical responses to climate in a forest–steppe in Southern Siberia, Dendrochronologia, 2016, no. 39, pp. 32–41.CrossRefGoogle Scholar
  13. 13.
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge: Cambridge Univ. Press, 2013. doi 10.1017/CBO9781107415324Google Scholar
  14. 14.
    Jones, P.D., Parker, D.E., Osborn, T.J., and Briffa, K.R., Global and hemispheric temperature anomalies: Land and marine instrumental records, in Trends ‘93: A Compendium of Data on Global Change, Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2013, pp. 603–608. doi 10.3334/CDIAC/cli.002Google Scholar
  15. 15.
    Alisov, B.P., Klimat SSSR (The Climate of the Soviet Union), Moscow: Mosk. Gos. Univ., 1956.Google Scholar
  16. 16.
    Vysotskaya, L.G. and Vaganov, E.A., Components of the variability of radial cell-size in tree rings of conifers, IAWA Bull., 1989, vol. 10, pp. 417–428.CrossRefGoogle Scholar
  17. 17.
    Lei, H., Milota, M.R., and Gartner, B.L., Betweenand within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl.), IAWA J., 1996, vol. 17, pp. 445–461.CrossRefGoogle Scholar
  18. 18.
    Eilmann, B., Zweifel, R., Buchmann, N., et al., Drought-induced adaptation of the xylem in Scots pine and pubescent oak, Tree Physiol., 2009, vol. 29, no. 8, pp. 1011–1020.CrossRefPubMedGoogle Scholar
  19. 19.
    Larson, P.R., The Vascular Cambium. Development and Structure, Berlin: Springer-Verlag, 1994.CrossRefGoogle Scholar
  20. 20.
    Vaganov, E.A., Shashkin, A.V., Sviderskaya, I.V., and Vysotskaya, L.G., Gistometricheskii analiz rosta drevesnykh rastenii (Histometric Analysis of the Growth of Woody Plants), Novosibirsk: Nauka, 1985.Google Scholar
  21. 21.
    Babushkina, E.A., Knorre, A.A., Vaganov, E.A., and Bryukhanova, M.V., Transformation of climatic response in radial increment of trees depending on topoecological conditions of their occurrence, Geogr. Nat. Resour., 2011, vol. 32, no. 1, pp. 80–86.CrossRefGoogle Scholar
  22. 22.
    Babushkina, E.A. and Belokopytova, L.V., Climatic signal in radial increment of conifers in forest steppe of Southern Siberia and its dependence on local growing conditions, Russ. J. Ecol., 2014, vol. 45, no. 5, pp. 325–332.CrossRefGoogle Scholar
  23. 23.
    Creber, G. and Chaloner, W.G., Influence of environmental factors on the wood structure of living and fossil trees, Bot. Rev., 1984, no. 4, pp. 357–448.CrossRefGoogle Scholar
  24. 24.
    Silkin, P.P., Multiparameter analysis of tree ring structure in dendrochronological research, Extended Abstract of Doctoral (Biol.) Dissertation, Krasnoyarsk, 2009.Google Scholar
  25. 25.
    Sviderskaya, I.V., Sukhovol’skii, V.G., Radosteva, E.Yu., and Kirdyanov, A.V., Model estimation of optimal ratio between cell wall thickness and lumen size for tracheids of conifers in temperate zone, J. Sib. Fed. Univ., Biology, 2011, vol. 4, no. 2, pp. 183–196.Google Scholar
  26. 26.
    Wentzel. E.S., Probability Theory (First Steps), Moscow: Mir, 1975.Google Scholar
  27. 27.
    Bryukhanova, M. and Fonti, P., Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability, Trees, 2013, vol. 27, no. 3, pp. 485–496.CrossRefGoogle Scholar
  28. 28.
    Wigley, T.M.L., Briffa, K.R., and Jones, P.D., On the average value of correlated time series, with application in dendrochronology and hydrometeorology, J. Clim. Appl. Meteorol., 1984, no. 23, pp. 201–213.CrossRefGoogle Scholar
  29. 29.
    Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 1995, vol. 57, no. 1, pp. 289–300.Google Scholar
  30. 30.
    Nicholls, J.W.P. and Waring, H.D., The effect of environmental factors on wood characteristics: 4. Irrigation and partial droughting of Pinus radiata, Silvae Genet., 1977, vol. 26, pp. 107–111.Google Scholar
  31. 31.
    Sterck, F.J., Zweifel, R., Sass-Klaassen, U., and Chowdhury, Q., Persisting soil drought reduces leaf specific conductivity in Scots pines (Pinus sylvestris) and pubescent oak (Quercus pubescens), Tree Physiol., 2008, vol. 28, pp. 528–536.CrossRefGoogle Scholar
  32. 32.
    Hacke, U.G. and Sperry, J.S., Functional and ecological xylem anatomy, Perspect. Plant Ecol. Evol. Syst., 2001, vol. 4, pp. 97–115.CrossRefGoogle Scholar
  33. 33.
    Babushkina, E.A. and Belokopytova, L.V., Cambial zone is the main target of external factors influence on the conifers tree-ring formation, Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., 2015, no. 6, pp. 35–45.Google Scholar
  34. 34.
    Liang, W., Heinrich, I., Simard, S., et al., Climate signals derived from cell anatomy of Scots pine in NE Germany, Tree Physiol., 2013, vol. 33, no. 8, pp. 833–844.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Babushkina
    • 1
  • L. V. Belokopytova
    • 1
  • T. V. Kostyakova
    • 1
  • V. I. Kokova
    • 1
  1. 1.Khakass Technical InstituteSiberian Federal UniversityAbakanRussia

Personalised recommendations