Russian Journal of Ecology

, Volume 49, Issue 1, pp 62–68 | Cite as

Morphological Diversity and Variability of Sympatric Populations of Crucian and Prussian Carps in Radionuclide Contaminated Lakes in the Southern Urals

  • V. Yu. Baranov
  • A. G. Vasil’ev


The variation in the body shape of crucian and prussian carps has been studied by methods of geometric morphometrics in sympatric populations from two geographically close lakes in the Southern Urals subjected to different degrees of contamination with anthropogenic radionuclides. Along with particular interspecies features, interpopulation differences have been detected as multidirectional reorganization of cyprinid morphogenesis under different ecological conditions of adjacent lakes. The morphogenetic divergence of crucian carp from adjacent lakes is almost two times smaller than that of the prussian carp coexisting with them. The increased intragroup morphodiversity in prussian carp indicates incomplete adaptation of the fish to anthropogenic radionuclide contamination of the lakes and their high morphogenetic plasticity and high adaptive potential than in crucian carp.


variation morphological diversity crucian carp prussian carp radioactive contamination geometric morphometrics Southern Urals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mina, M.V., Mikroevolyutsiya ryb (Microevolution of Fishes), Moscow: Nauka, 1986.Google Scholar
  2. 2.
    Glubokovskii, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmonid Fishes), Moscow: Nauka, 1995.Google Scholar
  3. 3.
    Mina, M.V., Mironovsky, A.N., and Dgebuadze, Yu.Yu., Lake Tana large barbs: Phenetics, growth and diversification, J. Fish Biol., 1996, vol. 48, pp. 383–404.CrossRefGoogle Scholar
  4. 4.
    Clabaut, C., Bunje, P.M.E., Salzburger, W., et al., Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations, Evolution, 2007, vol. 61, no. 3, pp. 560–578.CrossRefPubMedGoogle Scholar
  5. 5.
    Pavlov, S.D., Kuzishchin, K.V., Gruzdeva, M.A., Senchukova, A.L., and Pivovarov, E.A., Phenetic diversity and spatial structure of chars (Salvelinus) of the Kronotskaya riverine-lacustrine system (Eastern Kamchatka), J. Ichthyol. (Moscow), 2013, vol. 53, no. 9, pp. 662–686.CrossRefGoogle Scholar
  6. 6.
    Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled technogenic morphological variation of two sympatric rodent species in the zone of influence from the Eastern Ural Radioactive Trace, Vopr. Radiats. Bezopasn., 2013, no. 4, pp. 4–13.Google Scholar
  7. 7.
    Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., et al. Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals, Russ. J. Ecol., 2015, vol. 46, no. 4, pp. 339–344.CrossRefGoogle Scholar
  8. 8.
    Foote, M., The evolution of morphological diversity, Annu. Rev. Ecol. Syst., 1997, vol. 28, pp. 129–152.CrossRefGoogle Scholar
  9. 9.
    Shekhanova, I.A., Radioekologiya ryb (Radioecology of Fishes), Moscow: Legkaya i Pishchevaya Promyshlennost’, 1983.Google Scholar
  10. 10.
    Vasil'ev, A.G., Epigenetic osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.Google Scholar
  11. 11.
    Nikol'skii, G.V., Chastnaya ikhtiologiya (Special Ichthyology), Moscow: Sovetskaya Nauka, 1950.Google Scholar
  12. 12.
    Dmitrieva, E.H., Morphoecological analysis of two Carassius species, Tr. Inst. Morfol. Zhiv. Akad. Nauk SSSR, 1957, no. 16, pp. 102–170.Google Scholar
  13. 13.
    Petkevich, A.N. and Nikonov, G.I., Karasi Sibiri (Carassius Species of Siberia), Sverdlovsk: Sredne-Ural’sk. Knizhn. Izd., 1974.Google Scholar
  14. 14.
    Abramenko, M.I., Kravchenko, O.V., and Velikoivanenko, A.E., Population genetic structure of the prussian carp Carassius auratus gibelio diploid–triploid complex from the Don River basin, J. Ichthyol. (Moscow), 1997, vol. 37, no. 1, pp. 56–65.Google Scholar
  15. 15.
    Vasil'eva, E.D. and Vasil’ev, V.P., The origin and taxonomic status of the triploid form of the prussian carp, Carassius auratus (Cyprinidae), J. Ichthyol. (Moscow), 2000, vol. 40, no. 8, pp. 553–563.Google Scholar
  16. 16.
    Mezhzherin, S.V., Kokodii, S.V., Kulish, A.V., et al., Hybridization of crucian carp, Carassius carassius (Linnaeus, 1758), in water bodies of Ukraine and the genetic structure of hybrids, Tsitol. Genet., 2012, no. 1, pp. 37–46.Google Scholar
  17. 17.
    Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.CrossRefGoogle Scholar
  18. 18.
    Zelditch, M.L., Swiderski, D.L., Sheets, H.D., et al., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier: Acad. Press, 2004.Google Scholar
  19. 19.
    Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.CrossRefPubMedGoogle Scholar
  20. 20.
    Levina, S.G., Deryagin, V.V., Likhachev, S.F., et al., The contents and distribution of long-lived radionuclides in bottom sediments of Bol’shoi Igish and Malyi Igish lakes located in the central part of the EURT, Vopr. Radiats. Bezopasn., Spets. Vyp., 2007, pp. 20–31.Google Scholar
  21. 21.
    Zemerova, Z.P., Radioecological status of lake ecosystems in the Eastern Ural Radioactiuve Trace (the example of Bol’shoi Igish, Malyi Igish, and Kuyanysh lakes), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 2007.Google Scholar
  22. 22.
    Deryagin, V.V., Sutyagin, A.A., Likhachev, S.F., et al., Current radioecological situation in some lake ecosystems in the EURT area, Chelyabinsk oblast, in Semipalatinskii Ispytatel’nyi poligon. Radiatsionnoe nasledie i problemy nerasprostraneniya: Mat-ly 3-i mezhdunar. nauchno-praktich. konf. (Semipalatinsk Test Site: Radiation Carryover and Nonproliferation Problems. Proc. 3rd Int. Sci.-Pract Conf.), Kurchatov, 2008, pp. 28–29.Google Scholar
  23. 23.
    Pravdin, I.F., Rukovodstvo po izucheniyu ryb (A Manual of Studies on Fishes), Moscow: Pishchevaya Promyshlennost’, 1966.Google Scholar
  24. 24.
    Rohlf, F.J., TpsDig, Digitize Landmarks and Outlines, Version 2.16, Stony Brook, NY: Department of Ecology and Evolution, State Univ. of New York, 2010.Google Scholar
  25. 25.
    Hammer, Ø., New methods for the statistical analysis of point alignments, Comput. Geosci., 2009, vol. 35, pp. 659–666.CrossRefGoogle Scholar
  26. 26.
    Rohlf, F.J., TpsUtil, File Utility Program, Version 1.47.9, Stony Brook, NY: Department of Ecology and Evolution, State Univ. of New York, 2010.Google Scholar
  27. 27.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9.Google Scholar
  28. 28.
    Berendeev, S.F., Bogdanov, V.D., Bogdanova, E.N., et al., Ekologiya ryb Ob’-Irtyshskogo basseina (The Ecology of Fishes of the Ob–Irtysh Basin), Pavlov, D.S. and Mochek, A.D., Eds., Moscow: KMK, 2006.Google Scholar
  29. 29.
    Bonduriansky, R., Crean, A.J., and Day, T., The implications of nongenetic inheritance for evolution in changing environments, Evol. Appl., 2012, vol. 5, pp. 192–201.CrossRefPubMedGoogle Scholar
  30. 30.
    Vasil'ev, A.G., Baranov, V.Yu., Smagin, A.I., and Chibiryak, M.V., Studies on variation body size and shape in in perch (Perca fluviatilis L.) from control and impact water bodies of the Techa River basin by methods of geometric morphometrics, Vopr. Radiats. Bezopasn., 2007, no. 1, pp. 67–81.Google Scholar
  31. 31.
    Buyanov, N.I., Kireeva, L.I., Laptev, M.I., and Prudnikov, L.V., Artificial radionuclide accumulation and removal in freshwater fishes, Ekologiya, 1983, no. 4, pp. 35–39.Google Scholar
  32. 32.
    Kozhara, A.V., Patterns of intraspecific variation in cyprinid speciews of the subfamily Leuciscinae: Ecological factors and modes of morphogeny, Zh. Obshch. Biol., 2002, vol. 63, no. 5, pp. 393–406.PubMedGoogle Scholar
  33. 33.
    Arshanitsa, N.M. and Perevoznikov, M.A., Toksikozy ryb s osnovami patologii: Spravochnaya kniga (Fish Toxicoses with Fundamentals of Pathology: A Reference Book), St. Petersburg: GosNIORKh, 2006.Google Scholar
  34. 34.
    Bel'chenko, L.A. and Kel’, O.V., Specific features of adaptation to hypoxia in Carassius carassius and Carassius auratus gibelio, Vopr. Ikhtiol., 1991, vol. 31, no. 6, pp. 981–988.Google Scholar
  35. 35.
    Bogdanov, V.D., Bol’shakov, V.N., and Gos’kova, O.A., Ryby Srednego Urala: Spravochnik-opredelitel' (Fishes of the Middle Urals: Reference Book and Identification Key), Yekaterinburg: Sokrat, 2006.Google Scholar
  36. 36.
    Ratner, V.A. and Vasil’eva, L.A., Induction of mobile genetic element transposition by stress factors, Soros. Obraz. Zh., 2000, vol. 6, no. 6, pp. 14–20.Google Scholar
  37. 37.
    Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, vol. 84, pp. 131–176.CrossRefPubMedGoogle Scholar
  38. 38.
    Ledón-Rettig, C.C., Ecological epigenetics: An introduction to the symposium, Integr. Comp. Biol., 2013, vol. 53, pp. 307–318.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Plant and Animal EcologyUral BranchEkaterinburgRussia

Personalised recommendations