Skip to main content
Log in

Influence of Carbon Material Supports on the Efficiency of the Isotope Exchange between Dalargine and Tritium

  • Published:
Radiochemistry Aims and scope

Abstract

Isotope exchange between dalargine applied onto various supports [glass, activated carbon, few-layer graphite (FLG)] and molecular tritium, performed with activation on a tungsten wire and on 5% Pd/C, 10% Pd/C, and 5% Pt/FLG catalysts was studied. Depending on the experiment conditions, the molar radioactivity of [3H]dalargine varied from 0.47 to 31 Ci mmol−1 with activation on a tungsten wire and from 0.63 to 5.5 Ci mmol−1 under the conditions of heating to 335 K in the presence of noble metal catalysts. Significant difference in the tritium distribution between amino acid residues of the peptide depending on the support and on the activation method is observed. Reactions of tritium atoms generated on tungsten led to the tritium incorporation mainly into aliphatic acid residues upon application of the peptide onto glass and into aromatic residues upon application onto activated carbon. The use of FLG as a support influenced the tritium redistribution between aliphatic and aromatic residues to a lesser extent. Upon tritium activation on 5% Pd/C, 10% Pd/C, and 5% Pt/FLD, tritium was mainly incorporated into aromatic residues, which is typical of electrophilic reactions. The study revealed strong effect of the support on the mechanism of the isotope exchange of hydrogen for tritium in dalargine. The intramolecular distribution of tritium in preparation of labeled compounds using thermal activation can be controlled by properly choosing a support onto which the substrate is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badun, G.A., Chernysheva, M.G., and Ksenofontov, A.L., Radiochim. Acta, 2012, vol. 100, pp. 401–408.

    Article  CAS  Google Scholar 

  2. Badun, G.A., Chernysheva, M.G., Tyasto, Z.A., et al., Radiochim. Acta, 2010, vol. 98, pp. 161–166.

    Article  CAS  Google Scholar 

  3. Tyasto, Z.A., Mikhalina, E.V., Chernysheva, M.G., and Badun, G.A., Radiochemistry, 2007, vol. 49, no. 2, pp. 182–185.

    Article  CAS  Google Scholar 

  4. Zolotarev, Y.A., Dadayan, A.K., Bocharov, E.V., et al., Amino Acids, 2003, vol. 24, pp. 325–333.

    Article  CAS  PubMed  Google Scholar 

  5. Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Russ. Chem. Rev., 2003, vol. 72, no. 5, pp. 423–446.

    Article  CAS  Google Scholar 

  6. Shevchenko, V.P., Nagaev, I.Yu., Shevchenko, K.V., et al., Radiochemistry, 2011, vol. 53, no. 3, pp. 336–340.

    Article  CAS  Google Scholar 

  7. Shevchenko, V.P., Badun, G.A., Nagaev, I.Yu., et al., Vestn. Mosk. Gos. Univ., Ser. 2: Khimiya, 2010, vol. 51, no. 2, pp. 128–131.

    CAS  Google Scholar 

  8. Shevchenko, V.P., Nagaev, I.Yu., Badun, G.A., et al., Dokl. Chem., 2012, vol. 442, part 2, pp. 42–46.

    Article  CAS  Google Scholar 

  9. Shevchenko, V.P., Razzhivina, I.A., Chernysheva, M.G., et al., Radiochemistry, 2015, vol. 57, no. 3, pp. 312–320.

    Article  CAS  Google Scholar 

  10. Razzhivina, I.A., Badun, G.A., Chernysheva, M.G., et al., Mendeleev Commun., 2016, vol. 26, pp. 59–60.

    Article  CAS  Google Scholar 

  11. Machado, B.F. and Serp. P., Catal. Sci. Technol., 2012, vol. 2, pp. 54–75.

    Article  CAS  Google Scholar 

  12. Huang, C., Li, C., and Shi, G., Energy Environ. Sci., 2012, vol. 5, pp. 8848–8868.

    Article  CAS  Google Scholar 

  13. Grayfer, E.D., Kibis, L.S., Stadnichenko, A.I., et al., Carbon, 2015, vol. 89, pp. 290–299.

    Article  CAS  Google Scholar 

  14. Kostogrud, I.A., Zamchii, A.O., Baranov, E.A., et al., Nauchn. Obozr. Fiz.-Mat. Nauki, 2014, no. 1, pp. 54–55.

    Google Scholar 

  15. Reina, A., Jia, X., Ho, J., et al., Nano Lett., 2009, vol. 9, pp. 30–35.

    Article  CAS  PubMed  Google Scholar 

  16. Makotchenko, V.G., Grayfer, E.D., Nazarov, A.S., et al., Carbon, 2011, vol. 49, pp. 3233–3241.

    Article  CAS  Google Scholar 

  17. Opalovskii, A.A., Nazarov, A.S., Uminskii, A.A., and Chichagov, Yu.V., Zh. Neorg. Khim., 1972, vol. 17, no. 10, pp. 2608–2611.

    CAS  Google Scholar 

  18. Selig, H., Sunder, W.A., Vasile, M.J., et al., J. Fluorine Chem., 1978, vol. 12, pp. 397–412.

    Article  CAS  Google Scholar 

  19. Tsugita, A. and Scheffler, J.J., Eur. J. Biochem., 1982, vol. 124, pp. 585–588.

    Article  CAS  PubMed  Google Scholar 

  20. Spackman, D.H., Stein, W.H., and Moore, S., Anal. Chem., 1958, vol. 30, pp. 1185–1190.

    Article  Google Scholar 

  21. Trofimova, L., Ksenofontov, A., Mkrtchyan, G., et al., Curr. Anal. Chem., 2016, vol. 12, pp. 349–356.

    Article  CAS  Google Scholar 

  22. Sidorov, G.V., Badun, G.A., Baitova, E.A., et al., Radiochemistry, 2005, vol. 47, no. 3, pp. 311–315.

    Article  CAS  Google Scholar 

  23. Zolotarev, Yu.A., Dadayan, A.K., Vas’kovskii, B.V., et al., Russ. J. Bioorg. Chem., 2000, vol. 26, no. 7, pp. 457–460.

    Article  CAS  Google Scholar 

  24. Baratova, L.A., Bogacheva, E.N., Goldansky, V.I., et al., Tritievaya planigrafiya biologicheskikh makromolekul (Tritium Planigraphy of Biological Macromolecules), Moscow: Nauka, 1999.

    Google Scholar 

  25. Badun, G.A. and Fedoseev, V.M., Radiochemistry, 2001, vol. 43, no. 3, pp. 301–305.

    Article  CAS  Google Scholar 

  26. Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Radiochemistry, 2002, vol. 44, no. 4, pp. 389–393.

    Article  CAS  Google Scholar 

  27. Filatov, E.S., Simonov, E.F., and Orlova, M.A., Russ. Chem. Rev., 1981, vol. 50, no. 12, pp. 1134–1150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Razzhivina or G. A. Badun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzhivina, I.A., Badun, G.A., Artemkina, S.B. et al. Influence of Carbon Material Supports on the Efficiency of the Isotope Exchange between Dalargine and Tritium. Radiochemistry 61, 66–72 (2019). https://doi.org/10.1134/S1066362219010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362219010107

Keywords

Navigation