Skip to main content
Log in

Gas-Phase Conversion of Uranium Mononitride in a Nitrating Atmosphere

  • Published:
Radiochemistry Aims and scope

Abstract

Gas-phase conversion of UN to water-soluble compounds in NOx-air, NOx-H2O (vapor)-air, or HNO3 (vapor)-air atmosphere (hereinafter, nitrating atmosphere) at temperatures from 298 to 673 K was studied. The use of the oxidizing atmosphere based on NOx gases allows the conversion to be performed at a lower temperature. The process yields both UO3 and hydrates of UO2(NO3)2. The highest conversion of UN to water-soluble compounds, ∼80%, is reached at ∼565 K. In the course of gas-phase conversion in NOx-H2O (vapor)-air and HNO3 (vapor)-air atmospheres, UN transforms into water-soluble compounds (nitrates, hydroxynitrates). The gas-phase conversion of UN in an NOx-H2O (vapor)-air atmosphere occurs less efficiently than that in an HNO3 (vapor)-air atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, S.V. and Zaitsev, V.A., Nitridnoe toplivo dlya yadernoi energetiki (Nitride Fuel for Nuclear Power Engineering), Moscow: Tekhnosfera, 2013.

    Google Scholar 

  2. State-of-the-art report on innovative fuels for advanced nuclear systems, NEA Report no. 6895, 2014.

  3. Richter, K. and Sari, C., J. Nucl. Mater., 1991, vol. 184, pp. 167–176.

    Article  CAS  Google Scholar 

  4. Kulyukhin, S.A., Ustinov, O.A., Shadrin, A.Yu., and Voskresenskaya, Yu.A., At. Energy, 2016, vol. 120, no. 2, pp. 138–143.

    Article  CAS  Google Scholar 

  5. Kulyukhin, S.A., Shadrin, A.Yu., Voskresenskaya, Yu.A., et al., J. Radioanal. Nucl. Chem., 2015, vol. 304, no. 1, pp. 425–428.

    Article  CAS  Google Scholar 

  6. Ershov, B.G. and Kulyukhin, S.A., At. Energy, 2015, vol. 118, no. 4, pp. 261–264.

    Article  CAS  Google Scholar 

  7. Kulyukhin, S.A., Nevolin, Yu.M., Mizina, L.V., et al., Radiochemistry, 2016, vol. 58, no. 1, pp. 13–29.

    Article  CAS  Google Scholar 

  8. Kulyukhin, S.A., Nevolin, Yu.M., Konovalova, N.A., et al., Radiochemistry, 2016, vol. 58, no. 2, pp. 131–143.

    Article  CAS  Google Scholar 

  9. Kulyukhin, S.A., Nevolin, Yu.M., and Gordeev, A.V., Radiochemistry, 2017, vol. 59, no. 3, pp. 247–258.

    Article  CAS  Google Scholar 

  10. Collins, E.D., Delcul, G.D., Hunt, R.D., et al., Patent US 8574523, 2013.

    Google Scholar 

  11. JCPDS—Int. Centre for Diffraction Data, PDF 03-065-5985, UN.

  12. JCPDS—Int. Centre for Diffraction Data, PDF 03-065-0285, UO2.

  13. IR Database, IR-Spektrensammlung der ANSYCO GmbH, https://doi.org/www.ansyco.de, addressed Febr. 15, 2018.

  14. NIST Chemistry WebBook, NIST Standard Reference Database no. 69, https://doi.org/webbook.nist.gov/chemistry/, addressed Febr. 15, 2018.

  15. JCPDS—Int. Centre for Diffraction Data, PDF 00-018-1429, ε-UO3.

  16. JCPDS—Int. Centre for Diffraction Data, PDF 00-027-0937, UO2(NO3)2-3H2O.

  17. JCPDS—Int. Centre for Diffraction Data, PDF 01-077-0121, UO2(NO3)2-6H2O.

  18. Johnson, J.A., Rawn, C.J., Spencer, B.B., et al., J. Nucl. Mater., 2017, vol. 490, pp. 211–215.

    Article  CAS  Google Scholar 

  19. Hoekstra, H.R. and Siegel, S., J. Inorg. Nucl. Chem., 1961, vol. 18, pp. 154–165.

    Article  CAS  Google Scholar 

  20. Johnson, J.A., Studies of reaction process for voloxidation methods, PhD Diss., Univ. of Tennessee, 2013.

    Google Scholar 

  21. JCPDS—Int. Centre for Diffraction Data, PDF 00-010-0309, UO3·0.8H2O.

  22. JCPDS—Int. Centre for Diffraction Data, PDF 01-074-2101, α-U3O8.

  23. Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473.

    Article  CAS  Google Scholar 

  24. Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium: The Element, Its Binary and Related Compounds, New York: McGraw-Hill, 1951.

    Google Scholar 

  25. Lister, A.J. and Richardson, R.J., The preparation of uranium trioxide by thermal decomposition of uranyl nitrate, AERE C/R 1874, Harwell: Atomic Energy Research Establishment, 1954.

    Google Scholar 

  26. Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Technology of Uranium), Moscow: Atomizdat, 1964.

    Google Scholar 

  27. Schaal, G. and Faron, R., Patent US 5628048, May 6, 1997.

  28. JCPDS—Int. Centre for Diffraction Data, PDF 29-1379, (UO2)2(OH)2(NO3)2·4H2O.

  29. JCPDS—Int. Centre for Diffraction Data. PDF 16-0204, UO2(OH)NO3·3H2O.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kulyukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyukhin, S.A., Nevolin, Y.M. & Gordeev, A.V. Gas-Phase Conversion of Uranium Mononitride in a Nitrating Atmosphere. Radiochemistry 61, 5–11 (2019). https://doi.org/10.1134/S1066362219010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362219010028

Keywords

Navigation