Advertisement

Cluster Variational-Selective Method of Passive Location for Triangulation Measuring Systems

  • Yu. G. Bulychev
  • I. G. Nasenkov
  • E. N. Chepel
Data Processing and Identification
  • 17 Downloads

Abstract

Based on the mathematical apparatus of cluster and variational-selective analysis, we develop a new intellectual-analytic method for constructing an estimate of irradiating the target position for the case of significant a priori indeterminacy with respect to the functioning conditions of a triangulation measuring system. This method is an alternative to the known methods of maximal verisimilitude, minimal squares, and minimum of various geometric and cinematic discrepancies, applied traditionally for solving the passive location problem within the normal functioning conditions of the system. We provide the results of comparative analysis and practical recommendations for applying the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Saibel’, Principles of the Theory of Radiotechnical Methods Accuracy (Oborongiz, Moscow, 1958) [in Russian].Google Scholar
  2. 2.
    I. S. Kukes and M. E. Starik, Fundamentals of Wireless Direction Finding (Sov. Radio, Moscow, 1964) [in Russian].Google Scholar
  3. 3.
    Theoretical Foundations of Radiolocation, Ed. by Ya. D. Shirman (Sov. Radio, Moscow, 1970) [in Russian].Google Scholar
  4. 4.
    V. S. Kondrat’ev, A. F. Kotov, and L. N. Markov, Multiposition Radiotechnical Systems (Radio Svyaz’, Moscow, 1986) [in Russian].Google Scholar
  5. 5.
    V. S. Chernyak, Multiposition Radiolocation (Radio Svyaz’, Moscow, 1993) [in Russian].Google Scholar
  6. 6.
    V. A. Botov, V. E. Zhuravlev, and A. N. Krenev, “Comparative analysis of radio source position finding techniques,” Radiotekhnika, No. 2, 28–32 (2006).Google Scholar
  7. 7.
    Yu. V. Bolotin, “Generalized least squares method in the problem of evaluation by angular measurements,” Avtom. Telemekh., No. 2, 65–74 (1997).Google Scholar
  8. 8.
    E. A. Kirsanov and A. N. Fomin, “Algorithms of calculation of coordinates of source of radio emission in goniometric and measuring differences distances systems with the minimum number of mobile carriers with error check of definition of site of places of acceptance,” Radiotekhnika, No. 7, 47–51 (2013).Google Scholar
  9. 9.
    L. E. Shirokov, “Complex hypothesis tracking of moving objects,” J. Comput. Syst. Sci. Int. 39, 975 (2000).Google Scholar
  10. 10.
    Yu. P. Mel’nikov and S. V. Popov, Electronic Intelligence. Methods for Estimating the Effectiveness of Positioning of Radiation Sources (Radiotekhnika, Moscow, 2008) [in Russian].Google Scholar
  11. 11.
    V. A. Ufaev, V. I. Afanas’ev, and S. N. Razin’kov, “Estimation of radio source coordinates based on measurements of electromagnetic field amplitude,” Radiotekhnika, No. 10, 71–73 (2003).Google Scholar
  12. 12.
    V. D. Syten’kii, “Passive location on the basis of the amplitude measurement,” Izv. Vyssh. Uchebn. Zaved., Radioelektron., No. 1, 69–75 (2011).Google Scholar
  13. 13.
    A. E. Kolessa, “Estimation of the coordinates of a collection of objects observed in the multiposition passive location systems,” Radiotekh. Elektron. 32, 2534–2540 (1987).Google Scholar
  14. 14.
    Reference Book on Radiolocation, Ed. by M. M. Skolnik (Sov. Radio, Moscow, 1978) [in Russian].Google Scholar
  15. 15.
    S. C. Singhal and L. E. Stansel, Opt. Eng. 19, 376 (1980).CrossRefGoogle Scholar
  16. 16.
    M. Wax, IEEE Trans. Aerospace Electron. Syst. 19, 658 (1983).CrossRefGoogle Scholar
  17. 17.
    V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, and I. G. Nasenkov, “An angular–energy method of nonstationary passive location based on a single-position system,” J. Comput. Syst. Sci. Int. 54, 783 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, and I. G. Nasenkov, “Classification of passive location invariants and their use,” J. Comput. Syst. Sci. Int. 54, 905 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yu. G. Bulychev, I. G. Nasenkov, and S. S. Ivakina, “Argumentation of possibility of combined application of goniometric and goniometric-power methods of passive location,” Radiotekhnika, No. 3, 128–136 (2015).Google Scholar
  20. 20.
    Yu. G. Bulychev, I. G. Nasenkov, and S. S. Ivakina, “Passive-energy location and navigation method in stationary and non-stationary statements,” Radiotekhnika, No. 6, 107–115 (2015).zbMATHGoogle Scholar
  21. 21.
    Yu. G. Bulychev and I. V. Burlai, “Direction finding under a priori uncertain conditions,” J. Comput. Syst. Sci. Int. 41, 716 (2002).Google Scholar
  22. 22.
    A. G. Radzievskii and A. A. Sirota, Information Support of Radioelectronic Systems in Conflict Situations (IPRZhR, Moscow, 2001) [in Russian].Google Scholar
  23. 23.
    Yu. A. Smirnov, Radiotechnical Reconnaissance (Voenizdat, Moscow, 2001) [in Russian].Google Scholar
  24. 24.
    Yu. G. Bulychev, V. Yu. Bulychev, S. S. Ivakina, I. G. Nasenkov, P. I. Nikolas, and E. N. Chepel’, “Substantiation of methods for optimal estimation of target motion parameters in triangulation location systems,” J. Comput. Syst. Sci. Int. 54, 593 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yu. G. Bulychev and V. A. Golovskoi, “Regularized processing of observations in angle-measuring systems under the a priori uncertainty conditions,” J. Commun. Technol. Electron. 55, 65 (2010).CrossRefGoogle Scholar
  26. 26.
    Yu. G. Bulychev, I. V. Burlai, A. P. Manin, and Ya. V. Kritskii, “The variational–selective method for estimating object coordinates in a theta-theta navigation system,” J. Comput. Syst. Sci. Int. 40, 663 (2001).zbMATHGoogle Scholar
  27. 27.
    X. Lin, T. Kirubarajan, Y. Bar-Shalom, and S. Maskell, “Comparison of EKF, pseudomeasurement and particle filters for a bearing-only target tracking problem,” Proc. SPIE 4728, 240–250 (2002).CrossRefGoogle Scholar
  28. 28.
    B. M. Miller, K. V. Stepanyan, A. B. Miller, K. V. Andreev, and S. N. Khoroshenkikh, “Optimal filter selection for UAV trajectory control problems,” in Proceedings of the 37th Conference for Young Scientists and Engineers on Information Technology and Systems (IITP RAS, Kaliningrad, Russia, 2013), pp. 327–333.Google Scholar
  29. 29.
    V. J. Aidala and S. C. Nardone, “Biased estimation properties of the pseudolinear tracking filter,” IEEE Trans. Aerospace Electron. Syst. 18, 432–441 (1982).CrossRefGoogle Scholar
  30. 30.
    K. S. Amelin and A. B. Miller, “An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements,” J. Commun. Technol. Electron. 59, 622–631 (2014).CrossRefGoogle Scholar
  31. 31.
    A. B. Miller, “Development of the motion control on the basis of Kalman filtering of bearing-only measurements,” Autom. Remote Control. 76, 1018–1035 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    A. Miller and B. Miller, “Stochastic control of light UAV at landing with the aid of bearing-only observations,” in Proceedings of the SPIE 8ht International Conference on Machine Vision ICMV 2015, Barcelona, 2015, Proc. SPIE 9875, 987529 (2015).Google Scholar
  33. 33.
    S. Karpenko, I. Konovalenko, A. Miller, B. Miller, and D. Nikolaev, “UAV control on the basis of 3D landmark bearing-only observations,” Sensors 15, 29802–29820 (2015).CrossRefGoogle Scholar
  34. 34.
    S. Karpenko, I. Konovalenko, A. Miller, B. Miller, and D. Nikolaev, “Visual navigation of the UAVs on the basis of 3D natural landmarks,” in Proceedings of the SPIE 8th International Conference on Machine Vision ICMV 2015, Barcelona, 2015, Proc. SPIE 9875, 98751I (2015).Google Scholar
  35. 35.
    A. Miller and B. Miller, “UAV control on the basis of the bearing-only observations,” in Proceedings of the 2014 Australian Control Conference, Canberra, 2014, pp. 31–36.Google Scholar
  36. 36.
    A. Miller and B. Miller, “Tracking of the uAV trajectory on the basis of bearing-only observations, in Proceedings of the 53rd IEEE CDC, Los-Angeles, 2014.Google Scholar
  37. 37.
    B. F. Zhdanyuk, Fundamentals of Statistical Processing of Trajectory Measurements (Sov. Radio, Moscow, 1978) [in Russian].Google Scholar
  38. 38.
    E. N. Gil’bo and I. B. Chelpanov, Signal Processing Based on Ordered Selection (Sov. Radio, Moscow, 1975) [in Russian].Google Scholar
  39. 39.
    V. I. Mudrov and V. P. Kushko, Methods of Measurement Processing: Quasi-Believable Estimates (Radiosvyaz’, Moscow, 1983) [in Russian].Google Scholar
  40. 40.
    Ch. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, Philadelphia, PA, 1995; Nauka, Moscow, 1986).zbMATHGoogle Scholar
  41. 41.
    Yu. G. Bulychev and A. P. Manin, Mathematical Aspects of Detection of Aircraft Motion (Mashinostroenie, Moscow, 2000) [in Russian].zbMATHGoogle Scholar
  42. 42.
    I. D. Mandel, Cluster Analysis (Finansy Statistika, Moscow, 1988) [in Russian].zbMATHGoogle Scholar
  43. 43.
    W. T. Williams and G. N. Lance, Hierarchical classificatory methods, in Statistical Methods for Digital Computers, Ed. by K. Enslein, A. Ralston, and H. S. Wilf (Wiley, New York, 1977); Vol. 3, pp. 269–295.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. G. Bulychev
    • 1
  • I. G. Nasenkov
    • 2
  • E. N. Chepel
    • 2
  1. 1.Russian Gradient Research InstituteRostov-on-DonRussia
  2. 2.AO Concern Radioelectronic TechnologiesMoscowRussia

Personalised recommendations