Algorithm for synthesizing optimal controllers of given complexity

  • M. G. Zotov
Systems Theory and General Control Theory


This paper proposes a criterion based on which, using methods of mathematical programming, an algorithm is constructed for successively reducing the limit complexity of a controller.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Pugachev, I. E. Kazakov, and L. G. Evlanov, Foundations of Statistical Theory of Automatic Systems (Mashinostroenie, Moscow, 1974) [in Russian].Google Scholar
  2. 2.
    Q. G. Wang, T. H. Lee, and J. B. He, “Low-order stabilizers for linear systems,” Automatic 33, 651–654 (1997).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    O. N. Kiselev and B. T. Polyak, “Synthesis of low-order controllers by the H and the maximum robustness criteria,” Avtom. Telemekh., No. 3, 119–130 (1999).MathSciNetMATHGoogle Scholar
  4. 4.
    M. Sh. Misrikhanov, V. N. Ryabchenko, and P. S. Shcherbakov, “Power system stabilization a simple controller with ensuring the desireq quality transients,” Elektro-Info, No. 10, 46–55 (2008).Google Scholar
  5. 5.
    L. H. Kell and S. P. Bhattacharyya, “State-space design of low-order stabilizers,” IEEE Trans. Autom. Control. 35, 182–186 (1990).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    V. V. Dombrovskii, “Synthesis of reduced-order dynamic regulators under H -constraints,” Avtom. Telemekh., No. 11, 10–17 (1996).MathSciNetGoogle Scholar
  7. 7.
    P. S. Shcherbakov, “Composition of regulators of given structure subject to meeting the engineering terms,” Probl. Upravl., No. 5, 9–17 (2009).Google Scholar
  8. 8.
    V. V. Dombrovskii, “Decreasing order of linear multidimensional systems with limitations,” Avtom. Telemekh., No. 4, 123–132 (1994).Google Scholar
  9. 9.
    K. Åström and B. Wittenmark, Computer-Controlled Systems. Theory and Design (Prentice Hall, Upper Saddle River, NJ, 1997; Mir, Moscow, 1987).Google Scholar
  10. 10.
    M. G. Zotov, Multicriteria Design of Automatic Control Systems (BINOM, Labor. Znanii, Moscow, 2009) [in Russian].Google Scholar
  11. 11.
    A. V. Attetkov, V. S. Zarubin, and A. N. Kanatnikov, Introduction to Optimization Methods (Finansy Statistika, Moscow, 2008) [in Russian].Google Scholar
  12. 12.
    A. A. Zhiglyavskii and A. G. Zhilinskas, Methods of a Search for Global Extremum (Nauka, Moscow, 1991) [in Russian].Google Scholar
  13. 13.
    V. I. Kukhtenko, “To calculation of correcting chains by automatic control systems according to mean-square error minimum criterion,” Avtom. Telemekh., No. 9, 1180–1187 (1959).Google Scholar
  14. 14.
    M. G. Zotov, “Improvement of performance of system functioning by introducing an additional correction block in the control device,” J. Comput. Syst. Sci. Int. 50, 186 (2011).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations