Advertisement

Simulation of the motion of a five-link crawling robot with controlled friction on a surface having obstacles

  • L. Yu. Vorochaeva
  • A. S. Yatsun
  • S. F. Yatsun
Robotics

Abstract

We consider the motion of a five-link crawling robot in an environment with obstacles located discretely. The robot is fitted with special controlled friction elements for the periodic fixation of links on the surface and has a possibility of the spatial configuration change due to a detachment of the end links from the surface. One of the possible crawling modes is analyzed as the end links are detached from the surface and the adjacent links rotate by a given angle in the plane of motion without interaction with obstacles. As the result of simulating by the numerical method, we establish the dependence between the average velocity of the plant (and its maneuverability between obstacles) and control values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tanaka, K. Harigaya, and T. Nakamura, “Development of a peristaltic crawling robot for long-distance inspection of sewer pipes,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM, Besançon, France, July 8–11, 2014.Google Scholar
  2. 2.
    S. Jatsun, O. Loktionova, and A. Malchikov, “Six-link in-pipe crawling robot,” in Advances on Theory and Practice of Robots and Manipulators (Springer International, New York, 2014), pp. 341–348.Google Scholar
  3. 3.
    A. Houssam, A. Ananiev, and I. Kalaykov, “Stability study of underwater crawling robot on non-horizontal surface,” in Proceedings of the 17th International Conference on Climbing and Walking Robots CLAWAR, Poznan, Poland, 2014.Google Scholar
  4. 4.
    E. S. Conkur and R. Gurbuz, “Path planning algorithm for snake-like robots,” Inform. Technol. Control. 37, 159–162 (2008).Google Scholar
  5. 5.
    D. Lounis, D. Spinello, W. Gueaieb, and H. Sarfraz, “Planar kinematics analysis of a snake-like robot,” Robotica 32, 659–675 (2014).CrossRefGoogle Scholar
  6. 6.
    W. Wu, X. Jun, Y. H. L. Wei, S. M. Ri, X. C. Chun, Y. H. Zhen, and L. Zhong, “Structure design of climbing snake-like robot for detection of cable-stayed bridge,” Appl. Mech. Mater. 598, 610–618 (2014).CrossRefGoogle Scholar
  7. 7.
    T. Matsuo and K. Ishii, “Adaptative motion control system of a snake-like robot using a neural oscillator netowork,” in Proceedings of the Joint 7th International Conference on Soft Computing and Intelligent Systems SCIS, and 15th International Symposium on Advanced Intelligent Systems ISIS, Abu Dhabi, 2014.Google Scholar
  8. 8.
    L. Yan-hui, L. Li, W. Ming-hui, and G. Xian, “Simulation study on serpentine locomotion of underwater snakelike robot,” Int. J. Control Automat. 8, 373–384 (2015).Google Scholar
  9. 9.
    G. Li, W. Li, J. Zhang, and H. Zhang, “Analysis and design of asymmetric oscillation for caterpillar-like locomotion,” J. Bionic Eng. 12, 190–203 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Li, H. Zhang, J. Zhang, and R. T. Bye, “Development of adaptive locomotion of a caterpillar-like robot based on a sensory feedback CPG model,” Adv. Robotics 28, 389–401 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Gorges, C. Riehs, and K. Zimmermann, T. Kästner, “A cascaded worm-like locomotion system–constructive design, software and experimental environment,” in Proceedings of the 58th Ilmenau Scientific Colloquium, Ilmenau, 2014.Google Scholar
  12. 12.
    S. Jatsun and A. Malchikov, “Mobile worm-like robots for pipe inspection,” in Handbook of Research on Advancements in Robotics and Mechatronics (Am. Univ. in Cairo, Egypt, 2014), pp. 168–218.Google Scholar
  13. 13.
    F. L. Chernous’ko, “On motion of a three-link mechanism along a horizontal plane,” Prikl. Mat. Mekh. 65, 15–20 (2001).MATHGoogle Scholar
  14. 14.
    F. L. Chernous’ko, “Controllable motions of a two-link mechanism along a horizontal plane,” J. Appl. Math. Mech. 65, 565–577 (2001).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    F. L. Chernous’ko, “Motion of multilink mechanisms along a plane,” in Problems of Mechanics, Collection of Articles Dedicated to 90 Years from A. Yu. Ishlinskii Birthday (Fizmatlit, Moscow, 2003), pp. 783–802.Google Scholar
  16. 16.
    F. L. Chernous’ko, “Wave-like motion of multilink mechanism along a horizontal plane,” Prikl. Mat. Mekh. 64, 518–531 (2000).MathSciNetMATHGoogle Scholar
  17. 17.
    F. L. Chernous’ko, “Motion of flat multilink mechanism along a horizontal plane,” Prikl. Mat. Mekh. 64, 8–18 (2000).MathSciNetMATHGoogle Scholar
  18. 18.
    F. L. Chernous’ko, “The motion of a flat linkage over a horizontal plane,” Dokl. Phys. 45, 42 (2000).MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. L. Chernous’ko, “Optimal control of the motion of a multilink system in a resistive medium,” J. Appl. Math. Mech. 76, 255–267 (2012).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    F. L. Chernous’ko and M. M. Shunderyuk, “The influence of friction forces on the dynamics of a two-link mobile robot,” J. Appl. Math. Mech. 74, 13–23 (2010).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    F. L. Chernous’ko, “Optimal move of a multilink system in a resistive medium,” Tr. IMM UrO RAN 17 (2), 240–255 (2011).Google Scholar
  22. 22.
    F. L. Chernous’ko, “Control of multilink mechanisms motion on rough plane,” Tr. IMM UrO RAN 6 (1), 277–287 (2000).MathSciNetGoogle Scholar
  23. 23.
    S. A. Bashkirov, “Motion control algorithms and simulation of the dynamics of multilink robots moving based on the principles of a traveling wave,” J. Comput. Syst. Sci. Int. 46, 162 (2007).CrossRefMATHGoogle Scholar
  24. 24.
    K. S. Sorokin, “Control of a three-link robot moving on the plane with friction,” J. Comput. Syst. Sci. Int. 48, 489 (2009).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    N. A. Sobolev and K. S. Sorokin, “Experimental investigation of snakelike motions of a three-link mechanism,” J. Comput. Syst. Sci. Int. 45, 841 (2006).CrossRefMATHGoogle Scholar
  26. 26.
    S. F. Jatsun, L. Yu. Volkova, G. S. Naumov, and A. S. Yatsun, “Modelling of movement of the three-link robot with operated friction forces on the horizontal surface,” in Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Sydney, 2013, pp. 677–684.Google Scholar
  27. 27.
    L. Yu. Vorochaeva, G. S. Naumov, and S. F. Yatsun, “Simulation of motion of a three-link robot with controlled friction forces on a horizontal rough surface,” J. Comput. Syst. Sci. Int. 54, 151–164 (2015).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    S. F. Yatsun, L. Yu. Volkova, S. B. Rublev, and G. S. Naumov, “Three-link creeping robot as a vehicle,” in Progress of Vehicles and Transport Systems (Volgogr. Gos. Tekh. Univ., Volgograd, 2013), pp. 293–294 [in Russian].Google Scholar
  29. 29.
    S. F. Yatsun, V. Ya. Mishchenko, and G. S. Naumov, “Creeping mobile robot,” RF Patent No. 2567944, Byull. Izobret. No. 31 (2015).Google Scholar
  30. 30.
    S. F. Yatsun, L. Yu. Volkova, and G. S. Naumov, “Software for calculation of the motion parameters of threelink mechanism during transverse gait,” State Registration Certificate of Computer Software No. 2014611745 (2014).Google Scholar
  31. 31.
    S. F. Yatsun, L. Yu. Volkova, and G. S. Naumov, “Software for calculation of the motion parameters of threelink mechanism during longitudinal gait,” State Registration Certificate of Computer Software No. 2014611746 (2014).Google Scholar
  32. 32.
    S. F. Jatsun, L. Yu. Vorochaeva, A. S. Yatsun, and A. V. Malchikov, “Theoretical and experimental studies of transverse dimensional gait of five-link mobile robot on rough surface,” in Proceedings of the 10th International Symposium on Mechatronics and Its Applications ISMA’15, Istanbul, 2015, p.35.Google Scholar
  33. 33.
    N. Bolotnik, M. Pivovarov, I. Zeidis, and K. Zimmermann, “Dynamics and control of a two-module mobile robot on a rough surface,” in Advances on Theory and Practice of Robots and Manipulators (Springer International, New York, 2014), pp. 141–148.Google Scholar
  34. 34.
    M. H. P. Dekker, Zero-Moment Point Method for Stable Biped Walking (Univ. of Technology, Eindhoven, 2009).Google Scholar
  35. 35.
    M. Vukobratovic and B. Borovac, “Zero—moment point—thirty five years of its life,” Int. J. Humanoid Robotics 1, 157–173 (2004).CrossRefGoogle Scholar
  36. 36.
    L. Yu. Volkova, I. V. Lupekhina, G. Ya Panovko, and S. F. Yatsun, “Dynamics of the vibration driven tool at its interaction with the processing material,” Mashinostr. Inzhen. Obrazov., No. 4, 63–72 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. Yu. Vorochaeva
    • 1
  • A. S. Yatsun
    • 1
  • S. F. Yatsun
    • 1
  1. 1.Southwest State UniversityKurskRussia

Personalised recommendations