On controlling the adaptation of orthogonal walking movers to the supporting surface

  • E. S. Briskin
  • Ya. V. Kalinin
  • A. V. Maloletov
  • V. A. Serov
  • S. A. Ustinov


We construct a programmed motion of the drive to adapt a walking mover to the supporting surface based on the optimality criterion that takes into account the energy costs of movement, the shockless interaction with the ground, and the traction–coupling properties in stepping.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Bessonov, N. V. Umnov, V. V. Korenovsky, E. E. Silvestrov, and S. V. Khoborkov, “Six link mechanism for the legs of walking machines,” in Theory and Practice of Robots and Manipulators, Proceedings of the 13th CISM-IFToMM Symposium ROMANSY 13, Wien (Int. Centre Mech. Sci., New York, 2000), pp. 347–354.Google Scholar
  2. 2.
    E. S. Briskin, V. V. Zhoga, V. V. Chernyshev, et al., “The conception of the constructions, dynamics and control of the walking machine motion,” Mekhatron., Avtomatiz., Upravl., No. 5, 22–27 (2005).Google Scholar
  3. 3.
    E. S. Briskin, V. V. Zhoga, V. V. Chernyshev, and A. V. Maloletov, Dynamics and Motion Control of Walking Machines with Cyclic Movers, Ed. by E. S. Briskin (Mashinostroenie, Moscow, 2009) [in Russian].Google Scholar
  4. 4.
    E. S. Briskin and Ya. V. Kalinin, “On energetically efficient motion algorithms of walking machines with cyclic drives,” J. Comput. Syst. Sci. Int. 50, 348 (2011).CrossRefMATHGoogle Scholar
  5. 5.
    V. V. Beletskii, Two-Legged Walking-Model Problems of Dynamics and Control (Nauka, Moscow, 1984) [in Russian].Google Scholar
  6. 6.
    D. E. Okhotsimskii, A. K. Platonov, A. A. Kiril’chenko, and V. V. Lapshin, “Walking machines,” KIAM Preprint No. 87 (Keldysh Inst. Appl. Math. AN SSSR, Moscow, 1989).Google Scholar
  7. 7.
    M. F. Silva, J. A. Tenreiro Machado, and A. M. Lopes, “Energy analysis of multi-legged locomotion systems,” in Climbing and Walking Robots, Proceedings of the 4th International Conference CLAWAR 2001, London, 2001, pp. 143–150.Google Scholar
  8. 8.
    E. S. Briskin, I. P. Vershinina, A. V. Maloletov, and N. G. Sharonov, “On the control of motion of a walking machine with twin orthogonal rotatory movers,” J. Comput. Syst. Sci. Int. 53, 464 (2014).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    E. S. Briskin and A. E. Rusakovskii, “On effect of normal vibration on traction and coupling properties of walking machines,” Izv. Vyssh. Uchebn. Zaved., Mashinostroen., Nos. 7–9, 116–120 (1991).Google Scholar
  10. 10.
    E. S. Briskin and V. V. Chernyshev, “Simulation of dynamics of walking machines foot change,” Iskusstv. Intellekt, No. 3, 293–299 (2009).Google Scholar
  11. 11.
    Vibrations in Engineering, The Handbook, Vol. 2: Nonlinear Oscillations in Mechanical Engineering, Ed. by I. I. Blekhman (Mashinostroenie, Moscow, 1981; Springer, Berlin, 2005).Google Scholar
  12. 12.
    Vibrations in Engineering, The Handbook, Vol. 4: Vibration Processes and Machines, Ed. by E. E. Lavendel (Mashinostroenie, Moscow, 1981) [in Russian].Google Scholar
  13. 13.
    I. F. Goncharevich and K. V. Frolov, Theory of Vibration Technics and Technology (Nauka, Moscow, 1981) [in Russian].Google Scholar
  14. 14.
    V. L. Biderman, Theory of Mechanical Oscillations (Vyssh. Shkola, Moscow, 1980) [in Russian].Google Scholar
  15. 15.
    E. S. Briskin, V. V. Chernyshev, N. G. Sharonov, et al., “Field tests of the walking robot ‘Ortonog’,” Issled. Naukograda, No. 2 (4), 43–48 (2013).Google Scholar
  16. 16.
    I. M. Sobol’ and R. B. Statnikov, The Choice of Optimal Parameters in Multicriteria Problems, The School-Book for Higher School (Moscow, Drofa, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. S. Briskin
    • 1
  • Ya. V. Kalinin
    • 1
  • A. V. Maloletov
    • 1
  • V. A. Serov
    • 1
  • S. A. Ustinov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations