Optimal stabilization of bodies in electromagnetic suspensions without measurements of their location

  • D. V. Balandin
  • R. S. Biryukov
  • M. M. Kogan
  • A. A. Fedyukov
Control in Deterministic Systems


The optimal stabilization problem is considered for bodies in electromagnetic suspensions. To solve this problem, we form a linear stationary control law for the linearized system. This law is based on the feedback principle and uses the measuring of the current intensity in the circuit of the electromagnet, while the location of the body and its velocity are not measured. The optimality criterion is the generalized H -norm of the linearized system: it characterizes the extinguishing level for perturbations generated by external actions and unknown initial conditions. To compute the feedback parameters, the technique of linear matrix inequalities is applied. We provide mathematical simulation examples for the dynamics of a body in an electromagnetic suspension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Zhuravlev, Active Magneic Bearings. Theory, Design, Application (Politekhnika, St. Petersburg, 2003) [in Russian].Google Scholar
  2. 2.
    G. Schweitzer, Magnetic Bearings Theory, Design, and Applications to Rotating Machinery (Springer, Berlin, 2009).Google Scholar
  3. 3.
    S. C. Mukhopadhyay, “Do we really need sensors? A sensorless magnetic bearing perspective,” in Proceedings of the 1st International Conference on Sensing Technology, Parlmerston North, New Zealand, 2005, pp. 425–431.Google Scholar
  4. 4.
    W. Gruber, M. Pichler, M. Rothbock, and W. Amrhein, “Self-sensing active magnetic bearing using 2-level PWM current ripple demodulation,” in Proceedings of the 7th International Conference on Sensing Technology, Wellington, New Zealand, 2013, pp. 591–595.Google Scholar
  5. 5.
    T. Gluck, W. Kemmetmuller, C. Tump, and A. Kugi, “Resistance estimation algorithm for self-sensing magnetic levitation systems,” in Proceedings of the 5th IFAC Symposium on Mechatronic Systems (USA, Boston, 2010), pp. 32–37.Google Scholar
  6. 6.
    V. Kumar and J. Jerome, “LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system,” Proc. Eng. 64, 254–264 (2013).CrossRefGoogle Scholar
  7. 7.
    Yang Yifei and Zhu Huangqiu, “Optimal control and H output feedback design options for active magnetic bearing spindle position regulation,” J. Networks. 8, 1624–1631 (2013).Google Scholar
  8. 8.
    M. Hutterer, M. Hofer, T. Nenning, and M. Schrodl, “LQG control of an active magnetic bearing with a special method to consider the gyroscopic effect,” in Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014, pp. 54–59.Google Scholar
  9. 9.
    D. V. Balandin and M. M. Kogan, “Motion control for a vertical rigid rotor rotating in electromagnetic bearings,” J. Comput. Syst. Sci. Int. 50, 683 (2011).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Davoodi, P. K. Sedgh, and R. Amirifar, “H 2-and H -dynamic output feedback control of a magnetic bearing system via LMIs,” in Proceedings of the American Control Conference, Washington, USA, 2008, pp. 2522–2527.Google Scholar
  11. 11.
    D. V. Balandin and M. M. Kogan, “Generalized H -optimal control as a trade-off between the H -optimal and ?-optimal controls,” Autom. Remote Control 71, 993 (2010).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    D. V. Balandin and M. M. Kogan, “LMI-based H -optimal control with transients,” Int. J. Control. 83, 1664–1673 (2010).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    S. Boyd, El L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994).CrossRefMATHGoogle Scholar
  14. 14.
    P. Gahinet and P. Apkarian, “A linear matrix inequality approach to control,” Int. J. Robust Nonlin. Control. 4, 421–448 (1994).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    T. Iwasaki and R. E. Skelton, “All controllers for the general control problem: LMI existence conditions and state space formulas,” Automatica 30, 1307–1317 (1994).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D. V. Balandin and M. M. Kogan, Synthesis of Control Laws on the Basis of Linear Matrix Inequalities (Fizmatlit, Moscow, 2007) [in Russian].MATHGoogle Scholar
  17. 17.
    D. V. Balandin and M. M. Kogan, “Linear-quadratic and γ-optimal output control laws,” Autom. Remote Control 69, 911 (2008).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    D. V. Balandin and M. M. Kogan, “Revisited LQ output-feedback control: minimax controller for a set of initial states,” Int. J. Control. 82, 2051–2058 (2009).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    P. P. Khargonekar, K. M. Nagpal, and K. R. Poolla, “H -control with transients,” SIAM J. Control Optim. 29, 1373–1393 (1991).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Balandin
    • 1
  • R. S. Biryukov
    • 1
  • M. M. Kogan
    • 1
  • A. A. Fedyukov
    • 1
  1. 1.Lobachevskii Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations