Evaluate the Impact of Porous Media Structure on Soil Thermal Parameters Using X-Ray Computed Tomography


Soil thermal parameters are affected by soil texture, soil moisture, and porous media structure. X-ray computed tomography (X-CT) is used for description of soil porosity. The aim of this study was to observe the changes in porous media structure and soil thermal parameters with changes in soil moisture. Moreover, the effect of soil porous media structure, including connectivity and size of pores, on soil thermal parameters was estimated. Soil thermal diffusivity was measured at three different values of soil moisture, whereas soil thermal conductivity and volumetric heat capacity were calculated. Furthermore, the percentages of open, closed, and total porosities, as well as mesopores content were calculated at the same soil moisture using X-CT software programs. The results show that soil thermal parameters decreased along with decreasing soil moisture. In addition to decreasing soil moisture, soil thermal parameters decreased with increasing percentage of total porosity and the content of mesopores. However, the negative correlation between the soil thermal diffusivity and the content of mesopores is weak (r = –0.24). At the same time, a more significant negative correlation coefficient was found between soil thermal diffusivity and tomographic total porosity (r = –0.64) for silty loamy Albic Glossic Retisols. The influence of total porosity on the values of soil thermal diffusivity and other soil thermal parameters is larger than the pore size distribution (mesopores content). Soil heat transfer proceeds through soil particles (solid phase) and is not directly related to pore size distribution. The variations of soil thermal parameters values were in harmony with a quantitative description of soil porous media with the use of X-CT.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    N. H. Abu-Hamdeh, “Effect of tillage treatments on soil thermal conductivity for some Jordanian clay loam and loam soils,” Soil Tillage Res. 56, 145–151(2000).

    Article  Google Scholar 

  2. 2

    T. A. Arkhangel’skaya, K. I. Luk’yashchenko, and P. I. Tikhonravova, “Thermal diffusivity of typical chernozems in the Kamennaya steppe reserve,” Eurasian Soil Sci. 48, 177–182 (2015). https://doi.org/10.1134/S1064229315020027

    Article  Google Scholar 

  3. 3

    J. Bauer, L. Weihermüller, J. A. Huisman, and et al., “Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions,” Biogeochemistry 108, 119–134 (2012). https://doi.org/10.1007/s10533-011-9583-1

    Article  Google Scholar 

  4. 4

    R. Brewer, Fabric and Mineral Analysis of Soils (Wiley, New York, 1964).

    Google Scholar 

  5. 5

    W. Brutsaert, Evaporation into the Atmosphere: Theory, History, and Applications (Springer-Verlag, Dordrecht, 1982). https://doi.org/10.1007/978-94-017-1497-6

  6. 6

    J. A. R. Borges, L. F. Pires, F. A. M. Cássaro, W. L. Roque, R. J. Heck, J. A. Rosa, and F. G. Wolf, “X-ray microtomography analysis of representative elementary volume (REV) of soil morphological and geometrical properties,” Soil Tillage Res. 182, 112–122 (2018).

    Article  Google Scholar 

  7. 7

    J. S. Buchner, J. Šimůnek, J. Lee, D. E. Rolston, J. W. Hopmans, A. P. King, and J. Six, “Evaluation of CO2 fluxes from an agricultural field using a process-based numerical model,” J. Hydrol. 36, 131–143 (2008).

    Article  Google Scholar 

  8. 8

    S. O. Chung and R. Horton, “Soil heat and water flow with a partial surface mulch,” Water Resour. Res. 23, 2175–2186 (1987).

    Article  Google Scholar 

  9. 9

    E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006).

    Article  Google Scholar 

  10. 10

    S. R. Evett, N. Agam, W. P. Kustas, P. D. Colaizzi, and R. C. Schwartz, “Soil profile method for soil thermal diffusivity, conductivity and heat flux: comparison to soil heat flux plates,” Adv. Water Resour. 50, 41–54 (2012).

    Article  Google Scholar 

  11. 11

    C. Fang and J. B. Moncrieff, “The dependence of soil CO2 efflux on temperature,” Soil Biol Biochem. 33, 155–165 (2001).

    Article  Google Scholar 

  12. 12

    G. W. Gee and J. W. Bauder, “Particle size analysis,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (American Society of Agronomy, Soil Science Society of America. Madison, WI, 1986), pp. 383–411.

  13. 13

    B. S. Ghuman and R. Lal, “Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils,” Soil Sci. 139, 74–80 (1985).

    Article  Google Scholar 

  14. 14

    K. M. Gerke, E. B. Skvortsova, and D. V. Korost, “Tomographic method of studying soil pore space: current perspectives and results for some Russian soils,” Eurasian Soil Sci. 45, 700–709 (2012).

    Article  Google Scholar 

  15. 15

    D. Hillel, Fundamentals of Soil Physics (Elsevier, Amsterdam, 1980).

    Google Scholar 

  16. 16

    D. Hillel, Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Elsevier, Amsterdam, 1998).

    Google Scholar 

  17. 17

    A. L. Ivanov, E. V. Shein, and E. V. Skvortsova, “Tomography of soil pores: from morphological characteristics to structural–functional assessment of pore space,” Eurasian Soil Sci. 52, 61–69 (2019).

    Google Scholar 

  18. 18

    Z. Ju, T. Ren, and C. Hu, “Soil thermal conductivity as influenced by aggregation at intermediate water contents,” Soil Sci. Soc. Am. J. 75, 26–29 (2011)

    Article  Google Scholar 

  19. 19

    A. Klute and C. Dirksen, “Hydraulic conductivity of saturated soils,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (American Society of Agronomy, Soil Science Society of America. Madison, WI, 1986), pp. 694–700.

  20. 20

    J. Lipiec, M. Hajnos, and R.S. Wieboda, “Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter,” Geoderma 179–180, 20–27 (2012).

    Article  Google Scholar 

  21. 21

    A. Y. Mady and E. Shein, “Estimating soil thermal diffusivity using Pedotransfer functions with nonlinear regression,” Open Agric. J. 12, 164–173 (2018).

    Article  Google Scholar 

  22. 22

    S. M. Mahdavi, M. R. Neyshabouri, and H. Fujimaki, “Assessment of some soil thermal conductivity models via variations in temperature and bulk density at low moisture range,” Eurasian Soil Sci. 49, 915–925 (2016). https://doi.org/10.1134/S1064229316080068

    Article  Google Scholar 

  23. 23

    A. Y. Mady and E. Shein, “Modeling and validation hysteresis in soil water retention curve using tomography of pore structure,” Int. J. Water 12 (4), 370–381 (2018).

    Article  Google Scholar 

  24. 24

    A. Y. Mady and E. Shein, “Optimizing particle size distribution measured by laser diffraction technique for estimating soil hydraulic properties,” Soil Environ. 38 (2), 214–221 (2019).

    Article  Google Scholar 

  25. 25

    A. Y. Mady and E. V. Shein, “Assessment of pore space changes during drying and wetting cycles in hysteresis of soil water retention curve in Russia using X-ray computed tomography,” Geoderma Reg. 21, e00259 (2020). https://doi.org/10.1016/j.geodrs.2020.e00259

    Article  Google Scholar 

  26. 26

    K. Müller, S. Katuwal, I. Young, M. McLeod, P. Moldrup, L. W. de Jonge, and B. Clothier, “Characterizing and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures,” Geoderma 313, 82–91 (2018). https://doi.org/10.1016/j.geoderma.2017.10.020

    Article  Google Scholar 

  27. 27

    D. W. Nelson and L. P. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, et al. (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1986). pp. 539–579.

  28. 28

    T. E. Ochsner, R. Horton, and T. Ren, “A new perspective on soil thermal properties,” Soil Sci. Soc. Am. J. 65, 1641–1647 (2001). https://doi.org/10.2136/sssaj2001.1641

    Article  Google Scholar 

  29. 29

    J. P. Pereira Nunes, M. J. Blunt, and B. Bijeljic, “Porescale simulation of carbonate dissolution in micro-CT images,” J. Geophys. Res.: Solid Earth 121, 558–576 (2016). https://doi.org/10.1002/2015JB012117

    Article  Google Scholar 

  30. 30

    E. V. Shein and A. Y. Mady, “Soil thermal parameters assessment by direct method and mathematical models,” J. Soil Sci. Environ. Manage. 7 (10), 166–172 (2016). https://doi.org/10.5897/JSSEM2016.0585

    Article  Google Scholar 

  31. 31

    E. V. Shein, E. B. Skvortsova, A. V. Dembovetskii, K. N. Abrosimov, L. I. Il’in, and N. A. Shnyrev, “Pore-size distribution in loamy soils: a comparison between microtomographic and capillarimetric determination methods,” Eurasian Soil Sci. 49, 315–325 (2016). https://doi.org/10.1134/S1064229316030091

    Article  Google Scholar 

  32. 32

    E. B. Skvortsova, V. A. Rozhkov, K. N. Abrosimov, K. A. Romanenko, S. F. Khokhlov, D. D. Khaidapova, V. V. Klyueva, and A. V. Yudina, “Microtomographic analysis of pore space in a virgin soddy-podzolic soil,” Eurasian Soil Sci. 49, 1250–1258 (2016).

    Article  Google Scholar 

  33. 33

    K. M. Smits, T. Sakaki, A. Limsuwat, and T. H. Illangasekare, “Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles” Vadose Zone J. 9, 1–9 (2010).

    Article  Google Scholar 

  34. 34

    P. I. Tikhonravova and N. B. Khitrov, “Estimation of thermal conductivity in Vertisols of the Central Ciscaucasus region,” Eurasian Soil Sci. 36, 313–322 (2003).

    Google Scholar 

  35. 35

    M. Voltolini, N. Taş, S. Wang, E. L. Brodie, and J. B. Ajo-Franklin, “Quantitative characterization of soil microaggregates: New opportunities from sub-micron resolution synchrotron X-ray microtomography,” Geoderma 305, 382–393 (2017). https://doi.org/10.1016/j.geoderma.2017.06.005

    Article  Google Scholar 

  36. 36

    D. Wildenschild, and A. P. Sheppard, “X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems,” Adv. Water Resour. 51, 217–246 (2013).

    Article  Google Scholar 

  37. 37

    B. Usowicz, J. Lipiec, M. Łukowski, W. Marczewski, and J. Usowicz, “The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow,” Soil Tillage Res. 164, 45–51 (2016). https://doi.org/10.1016/j.still.2016.03.009

    Article  Google Scholar 

  38. 38

    X. Xie, Y. Lu, T. Ren, and R. Horton, “Thermal conductivity of mineral soils relates linearly to air-filled porosity,” Soil Sci. Soc. Am. J. 84 (1), 53–56 (2020). https://doi.org/10.1002/saj2.20016

    Article  Google Scholar 

  39. 39

    J. Zhao, T. Ren, Q. Zhang, Z. Du, and Y. Wang, “Effects of biochar amendment on soil thermal properties in the North China plain,” Soil Sci. Soc. Am. J. 80 (5), 1157–1166 (2016). https://doi.org/10.2136/sssaj2016.01.0020

    Article  Google Scholar 

  40. 40

    T. Zhang, G. Cai, S. Liu, and A. J. Puppala, “Investigation on thermal characteristics and prediction models of soils,” Int. J. Heat Mass Transfer 106, 1074–1086 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.084

    Article  Google Scholar 

  41. 41

    N. Zhang and Z. Wang, “Review of soil thermal conductivity and predictive models,” Int. J. Therm. Sci. 117, 172–183 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.03.013

    Article  Google Scholar 

Download references


The work was carried out with the involvement of the equipment of the Center for the collective use of scientific equipment “Functions and properties of soils and soil cover” of V.V. Dokuchaev Soil Science Institute.

Author information



Corresponding author

Correspondence to A. Y. Mady.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mady, A.Y., Shein, E.V., Skvortsova, E.B. et al. Evaluate the Impact of Porous Media Structure on Soil Thermal Parameters Using X-Ray Computed Tomography. Eurasian Soil Sc. 53, 1752–1759 (2020). https://doi.org/10.1134/S1064229320120066

Download citation


  • thermal diffusivity
  • thermal conductivity
  • open and closed porosity
  • pore size distribution
  • soil porosity
  • mesopores content