The Influence of Depth on Soil Chemical Properties and Microbial Respiration in the Upper Soil Horizons


Soil microbial respiration is a biological process that converts soil organic matter into atmospheric CO2 via soil microorganisms. It reflects the overall metabolic activity of soil microbial populations and usually used as an indicator of soil health. Soil chemical properties, among others, have an influence on a catabolic capacity of the soil and greatly vary among different soil layers. In this study, we examined patterns of chemical soil properties and soil microbial respiration along 0–10 and 10–25 cm depths of the soil to investigate if soil depth had any effects on soil chemical properties and how these changes with depth could shift the soil microbial respiration. We employed basal respiration method to estimate the rate of soil microbial respiration and measured important chemical properties using standard protocols. The results showed differential effects of soil depth on chemical properties where available nitrogen (\({\text{NH}}_{{\text{4}}}^{{\text{ + }}}\)–N, \({\text{NO}}_{3}^{ - }\)–N, and total N), cation exchange capacity, and Mg2+ were strongly influenced by soil depth. Soil microbial respiration greatly differed among the two soil depths (p = 0.0005) with a higher rate of soil microbial respiration in surface soils compared to subsurface soils. Soil microbial respiration had a significant positive correlation with total N, \({\text{NO}}_{3}^{ - }\)–N, \({\text{NH}}_{{\text{4}}}^{{\text{ + }}}\)–N, and soil organic matter (r = 0.98, 0.974, 0.9625, and 0.9455, respectively). The variation of soil microbial respiration was closely linked with the variation of soil organic matter and available nitrogen, implying that these variables were the key drivers of the variation of soil microbial respiration in the study area. Overall, the study highlighted that soil quality assessments and managements should include the depth effects to provide a better understanding of the dynamics of microbial respiration in the soil.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    A. Adugna and A. Abegaz, “Effects of soil depth on the dynamics of selected soil properties among the highlands resources of Northeast Wollega, Ethiopia: are these sign of degradation?” Solid Earth Discuss. 7, 2011–2035 (2015).

    Article  Google Scholar 

  2. 2

    A. Dubey, M. A. Malla, F. Khan, K. Chowdhary, S. Yadav, A. Kumar, S. Sharma, P. K. Khare, and M. L. Khan, “Soil microbiome: a key player for conservation of soil health under changing climate,” Biodiversity Conserv. 28 (8–9), 2405–2429 (2019).

    Article  Google Scholar 

  3. 3

    Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agronomy Monograph 9.2, Ed. by A. L. Page, R. H. Mille, and D. R. Keene (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 591–592.

    Google Scholar 

  4. 4

    A. Mehlich, Determination of P, Ca, Mg, K, Na and NH4 (Department of Agriculture, Raleigh, NC, 1953), pp. 1–53.

    Google Scholar 

  5. 5

    A. Richter, D. Huallacháin, E. Doyle, N. Clipson, J. P. van Leeuwen, G. B. Heuvelink, and R. E. Creamer, “Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: a large-scale study in Ireland,” Eur. J. Soil Sci. 69, 414–428 (2018).

    Article  Google Scholar 

  6. 6

    A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 37 (1), 29–38 (1934).

    Article  Google Scholar 

  7. 7

    A. S. Mgelwa, Y. L. Hu, W. Bin Xu, Z. Q. Ge, and T. W. Yu, “Soil carbon and nitrogen availability are key determinants of soil microbial biomass and respiration in forests along urbanized rivers of southern China,” Urban For. Urban Green 43, 126351 (2019).

    Article  Google Scholar 

  8. 8

    Analyse-it Software, 2009.

  9. 9

    B. Kunlanit, S. Butnan, and P. Vityakon, “Land-use changes influencing C sequestration and quality in topsoil and subsoil,” Agronomy 9, 1–16 (2019).

    Article  Google Scholar 

  10. 10

    B. Zhang, C. R. Penton, C. Xue, J. F. Quensen, S. S. Roley, J. Guo, A. Garoutte, T. Zheng, and J. M. Tiedje, “Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems,” Soil Biol. Biochem. 112, 140–152 (2017).

    Article  Google Scholar 

  11. 11

    C. Fang and J. B Moncrieff, “The variation of soil microbial respiration with depth in relation to soil carbon composition,” Plant Soil 268, 243–253 (2005).

    Article  Google Scholar 

  12. 12

    D. dos Santos Soares, M. L. G. Ramos, R. L. Marchão, G. A. Maciel, A. D. de Oliveira, J. V. Malaquias, and A. M. de Carvalho, “How diversity of crop residues in long-term no-tillage systems affect chemical and microbiological soil properties,” Soil Tillage Res. 194, 104316 (2019).

    Article  Google Scholar 

  13. 13

    D. Lazik, D. Vetterlein, S. K. Salas, P. Sood, B. Apelt, and H. J. Vogel, “New sensor technology for field-scale quantification of carbon dioxide in soil,” Vadose Zone J. 18, (2019).

  14. 14

    D. Liu, Y. Huang, S. An, H. Sun, P. Bhople, and Z. Chen, “Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients,” Catena 162, 345–353 (2018).

    Article  Google Scholar 

  15. 15

    E. G. Jobbágy and R. B. Jackson, “The distribution of soil nutrients with depth: Global patterns and the imprint of plants,” Biogeochemistry 53, 51–77 (2001).

    Article  Google Scholar 

  16. 16

    F. Cheng, X. Peng, P. Zhao, J. Yuan, C. Zhong, Y. Cheng, C. Cui, and S. Zhang, “Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains,” PLoS One 8 (6), (2013).

  17. 17

    I. Buzás, “Talaj-és agrokémiai vizsgálati módszerkönyv 2. A talajok fizikai-kémiai és kémiai vizsgálati módszerei (könyvismertetés),” Agrokem. Talajtan 38 (1–2), 504–505 (1989).

    Google Scholar 

  18. 18

    ISO 16072:2002: Soil Quality—Laboratory Methods for Determination of Microbial Soil Respiration (International Organization for Standardization, Geneva, 2002).

  19. 19

    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming and Creating Legends for Soil Maps, Update 2015, Word Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

  20. 20

    J. Egner, H. Riehm, and W. Domingo, “Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung,” Kungl. Lantbrukshögsk. Ann. 26, 199 (1960).

    Google Scholar 

  21. 21

    J. P. van Leeuwen, I. Djukic, J. Bloem, T. Lehtinen, L. Hemerik, P. C. de Ruiter, and G.J. Lair, “Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain,” Eur. J. Soil Biol. 79, 14–20 (2017).

    Article  Google Scholar 

  22. 22

    L. Xiao, G. Liu, and S. Xue, “Effects of vegetational type and soil depth on soil microbial communities on the Loess Plateau of China,” Arch. Agron. Soil Sci. 62 (12), 1665–1677 (2016).

    Article  Google Scholar 

  23. 23

    M. Andruschkewitsch, C. Wachendorf, A. Sradnick, F. Hensgen, R. G. Joergensen, and M. Wachendorf, “Soil substrate utilization pattern and relation of functional evenness of plant groups and soil microbial community in five low mountain,” Plant Soil 383, 275–289 (2014).; M. Ebrahimi, M. R. Sarikhani, A. A. Safari Sinegani, A. Ahmadi, and S. Keesstra, “Estimating the soil respiration under different land uses using artificial neural network and linear regression models,” Catena 174, 371–382 (2019).

  24. 24

    M. Tufa, A. Melese, and W. Tena, “Effects of land use types on selected soil physical and chemical properties: the case of Kuyu district, Ethiopia,” Eurasian J. Soil Sci. 8, 94–109 (2019).

    Article  Google Scholar 

  25. 25

    M. V. Semenov, T. I. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, E. A. Ivanova, T. V. Kolganova, and O. V. Kutovaya, “Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century,” Appl. Soil Ecol. 127, 8–18 (2018).

    Article  Google Scholar 

  26. 26

    N. Cañizales-Paredes, A. Tolón-Becerra, X. B. Lastra-Bravo, and F. M. Ruiz-Dager, “Evaluation of the effects of soil depth on microbial activity in three agroecosystems in Venezuela,” Commun. Soil Sci. Plant Anal. 43, 1273–1290 (2012).

    Article  Google Scholar 

  27. 27

    Q. Deng, G. Zhou, J. Liu, S. Liu, H. Duan, and D. Zhang, “Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China,” Biogeosciences 7, 315–328 (2010).

    Article  Google Scholar 

  28. 28

    A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Development Core Team, Vienna, 2017).

  29. 29

    R. E. Creamer, D. Stone, P. Berry, and I. Kuiper, “Measuring respiration profiles of soil microbial communities across Europe using MicroRespTM method,” Appl. Soil Ecol. 97, 36–43 (2016).

    Article  Google Scholar 

  30. 30

    S. Ouyang, W. Xiang, M. Gou, P. Lei, L. Chen, X. Deng, and Z. Zhao, “Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in southern China,” Biogeosciences, (2017).

  31. 31

    S. A. Wakelin, L. M. Macdonald, S. L. Rogers, A. L. Gregg, T. P. Bolger, and J. A. Baldock, “Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils,” Soil Biol. Biochem. 40 (3), 803–813 (2008).

    Article  Google Scholar 

  32. 32

    S. F. Batubara, F. Agus, A. Rauf, and D. Elfiati, “Soil respiration and microbial population in tropical peat under oil palm plantation,” IOP Conf. Ser.: Earth Environ. Sci. 260, (2019).

  33. 33

    S. Y. Korkanc, N. Ozyuvaci, and A. Hizal, “Impacts of land use conversion on soil properties and soil erodibility,” J. Environ. Biol. 29 (3), 363–370 (2008).

    Google Scholar 

  34. 34

    T. T. Nguyen and P. Marschner, “Soil respiration, microbial biomass and nutrient availability in soil after addition of residues with adjusted N and P concentrations,” Pedosphere 27, 76–85 (2017).

    Article  Google Scholar 

  35. 35

    V. Pino, PhD Thesis (University of Sydney, Sydney, 2016).

Download references


This work was supported by Stipendium Hungaricum Scholarship Program (SHE-935-1/2016), the EFOP-3.6.1-16-2016-0016 (Evaluations of Human Development Programmes), and by the Higher Education Institutional Excellence Program (N KFIH-1159-6/2019) of the Hungarian Ministry for Innovation and Technology.

Author information



Corresponding author

Correspondence to T. G. Weldmichael.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weldmichael, T.G., Michéli, E., Fodor, H. et al. The Influence of Depth on Soil Chemical Properties and Microbial Respiration in the Upper Soil Horizons. Eurasian Soil Sc. 53, 780–786 (2020).

Download citation


  • basal respiration
  • Hungary
  • soil depth
  • soil properties