Effects of Different Organic Materials Application on Soil Physicochemical Properties in a Primary Saline-Alkali Soil


The application of agricultural wastes to the soil does not only improve soil fertility but also helps in the recycling of agricultural waste resources. However, the effects of agricultural organic materials on soil physicochemical properties in primary saline and alkaline lands unsatisfactory. In this study, the effects of different organic materials on the physicochemical properties of primary saline-alkali soil were studied in the west of Jilin province for two consecutive years. The organic materials included: grass (FG), sheep manure (SM), coarse corn straw (CS), and granular corn straw (GS). Soil pH, EC, total salt content, CEC, exchangeable sodium, ESP, organic matter, field capacity, water immersed bulk density, sedimentation coefficient, hardness and the morphological characteristics of soil aggregates were measured by conventional methods. CEC, SOM, and the physical properties varied significantly among the different treatments, whereas pH, EC, total salt content and exchangeable sodium did not. Moreover, the morphology of the organic materials significantly affected pH, EC1 : 5, total salt content, SOM and physical properties of the soil however, it did not affect the CEC, exchangeable sodium and ESP. Comparing granular corn straw with coarse corn straw, granular corn straw increased the SOM and field capacity by 48.5 and 17.0% respectively and decreased the pH, EC1 : 5, total salt content, water immersed bulk density, sedimentation coefficient and soil hardness by 2.6, 2.4, 3.7, 11.3, 6.2 and 7.7% respectively. In conclusion, the application of organic materials effectively improved the physical and chemical properties in the saline-alkali soil however did not cause a complete change in the saline-alkaline nature of the soil. The morphology of the organic materials also significantly affected soil properties, with granular corn straw having a better effect than the other treatments.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    A. A. Abd El-Halim and B. Lennartz, “Amendment with sugarcane pith improves the hydrophysical characteristics of saline-sodic soil,” Eur. J. Soil Sci. 68 (3), 327–335 (2017).https://doi.org/10.1111/ejss.12426

    Article  Google Scholar 

  2. 2

    Agriculture Department of China, 2015. http://www. soil.csdb.cn/page/indexpage.

  3. 3

    S. A. Al-Khamisi, M. Al-Wardy, M. Ahmed, and S. A. Prathapar, “Impact of reclaimed water irrigation on soil salinity, hydraulic conductivity, cation exchange capacity and macro-nutrients,” J. Agric. Mar. Sci. 21, 7–18 (2016). https://doi.org/10.5958/0974-0228.2018.00032.4

    Article  Google Scholar 

  4. 4

    D. A. Angers and S. Recous, “Decomposition of wheat straw and rye residues as affected by particle size,” Plant Soil 189 (2), 197–203 (1997). https://doi.org/10.1023/a:1004207219678

    Article  Google Scholar 

  5. 5

    K. Arora, S. K. Chaudhari, J. A. Farooqi, and A. K. Rai, “Chemical properties of the salt-affected soils and performance of wheat (Triticum aestivum) with saline and alkali water irrigation,” J. Indian Soc. Soil Sci. 66 (3), 258–267 (2018). https://doi.org/10.24200/jams.vol21iss0pp7-18

    Article  Google Scholar 

  6. 6

    M. Ashraf, “Biotechnological approach of improving plant salt tolerance using antioxidants as markers,” Biotechnol. Adv. 27 (1), 84–93 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.003

    Article  Google Scholar 

  7. 7

    S. D. Bao, Agriculture Soil Chemical Analysis (Science Press, Beijing, 2000).

    Google Scholar 

  8. 8

    C. Briedis, J. C. de Moraes Sá, E. F. Caires, J. de Fátima Navarro, T. M. Inagaki, A. Boer, C. Q. Neto, A. de Oliveira Ferreira, L. B. Canalli, and J. B. Dos Santos, “Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system,” Geoderma 170, 80–88 (2012). https://doi.org/10.1016/j.geoderma.2011.10.011

    Article  Google Scholar 

  9. 9

    D. M. Cabiles, O. R. Angeles, S. E. Johnson-Beebout, P. B. Sanchez, and R. J. Buresh, “Faster residue decomposition of brittle stem rice mutant due to finer breakage during threshing,” Soil Tillage Res. 98 (2), pp. 211–216 (2008). https://doi.org/10.1016/j.still.2007.12.004

    Article  Google Scholar 

  10. 10

    Y. F. Cao, H. Zhang, C. Zhao, K. Liu, and J. L. Lv, “Changes of organic structures of crop residues during decomposition,” J. Agro-Environ. Sci. 5, 976–984 (2016).

    Google Scholar 

  11. 11

    Y. F. Cao, PhD Thesis (Northwest A&F University, Shaanxi, 2016)

  12. 12

    Y. H. Cheng, L. Wu, H. J. Sun, Y. J. Zhong, Y. M. Sun, and X. L. Zhang, “Effects of straw mulching and Vetiver grass hedgerows on the size distribution of the soil water stable aggregates and aggregate-associated organic carbon in red soil,” Acta Ecol. Sin. 36 (12), 3518–3524 (2016). https://doi.org/10.5846/stxb201410202056

    Article  Google Scholar 

  13. 13

    C. M. Chi, C. W. Zhao, X. J. Sun, and Z. C. Wang, “Reclamation of saline-sodic soil properties and improvement of rice growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China”, Geoderma 187, 24–30 (2012). https://doi.org/10.1016/j.geoderma.2012.04.005

    Article  Google Scholar 

  14. 14

    C. Deng, L. D. Bi, J. T. Qin, T. L. Zhang, and X. C. Yu, “Effects of long-term fertilization on soil property changes and soil microbial biomass,” Soils 45 (5), 888–893 (2013). https://doi.org/10.13758/j.cnki.tr.2013.05.019

    Article  Google Scholar 

  15. 15

    H. Dong, W. Li, W. Tang, and D. Zhang, “Early plastic mulching increases stand establishment and lint yield of cotton in saline fields,” Field Crops Res. 111 (3), 269–275 (2009). https://doi.org/10.1016/j.fcr.2009.01.001

    Article  Google Scholar 

  16. 16

    S. Y. Gu, X. He, Y. L. Nie, Y. H. Zhang, Y. Yang, X. W. Yu, and Z. M. Wei, “Effects of organic fertilizer application on fluorescence characteristics of fulvic acid in saline soil,” Res. Environ. Sci. 29 (5), 724–730 (2016). https://doi.org/10.13198/j.issn.1001-6929.2016.05.14

    Article  Google Scholar 

  17. 17

    J. Han, X. Wang, L. Zhang, Y. U. Weijia, L. Jiao, and W. Wang, “Effects of corn straw and sewage sludge on chemical indicators of saline alkali land,” Res. Soil Water Conserv., (2017). https://doi.org/10.13869/j.cnki.rswc.2017.03.019

    Google Scholar 

  18. 18

    R. C. He, J. G. Wu, and J. M. Li, “Effects of different organic materials on the characteristics of water stable aggregates in primary saline alkali soil,” J. Soil Water Conserv. 31 (3), 310–316 (2017). https://doi.org/10.13870/j.cnki.stbcxb.2017.03.051

    Article  Google Scholar 

  19. 19

    H. H. Hou, C. T. Wang, X. D. Wang, and F. H. Gao, “Study of improvement effects by biological measures in the Yellow River delta saline-alkali soil,” China Rural Water Hydropower 7, 1–6 (2014).

    Google Scholar 

  20. 20

    J. Hu, J. Wu, X. Qu, and J. Li, “Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation,” Chemosphere 200, 313–321 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.128

    Article  Google Scholar 

  21. 21

    J. Hu, J. Wu, S. Ahmed, S. Jimei, and X. Qu, “Effects of organic wastes on structural characterizations of fulvic acid in semiarid soil under plastic mulched drip irrigation,” Chemosphere 234, 830–836 (2019). https://doi.org/10.1016/j.chemosphere.2019.06.118

    Article  Google Scholar 

  22. 22

    J. F. Huang and H. Wu, “Sorption-desorption of Cd2+ ion in several soil colloids in the presence of oxalic acid and citric acid,” Acta Pedol. Sin. 41 (4), 558–563 (2008).

    Google Scholar 

  23. 23

    M. Ji, “Harm and improvement of saline alkali land,” Green Technol. 7, 122–124 (2016). https://doi.org/10.16663/j.cnki.lskj.2018.21.041

    Article  Google Scholar 

  24. 24

    F. J. Larney and D. A. Angers, “The role of organic amendments in soil reclamation: A review,” Can. J. Soil Sci. 92, 19–38 (2012).

    Article  Google Scholar 

  25. 25

    A. Lax, E. Diaz, V. Castillo, and J. Albaladejo, “Reclamation of physical and chemical properties of a salinized soil by organic amendment,” Arid Soil Res. Rehabil. 8 (1), 9–17 (1994). https://doi.org/10.1080/15324989309381374

    Article  Google Scholar 

  26. 26

    Y. Liang, J. Si, M. Nikolic, Y. Peng, W. Chen, and Y. Jiang, “Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization,” Soil Biol. Biochem. 37 (6), 1185–1195 (2005). https://doi.org/10.1016/j.soilbio.2004.11.017

    Article  Google Scholar 

  27. 27

    B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luizao, J. Petersen, and E. G. Neves, “Black carbon increases cation exchange capacity in soils,” Soil Sci. Soc. Am. J. 70, 1719–1730 (2006). https://doi.org/10.2136/sssaj2005.0383

    Article  Google Scholar 

  28. 28

    P. Long, W. S. Gao, P. Sui, L. L. Yan, and Y. Q. Cheng, “Effects of agricultural organic wastes incorporation on soil water-stable aggregates and C, N contents,” J. China Agric. Univ. 19 (6), 107–118 (2014).

    Google Scholar 

  29. 29

    C. Luo, G. Xiao, F. Zhang, and L. I. Qian, “Effects of different salt stresses on rice yield and quality,” J. Arid Land Res. Environ. 31 (1), 137–141 (2017). https://doi.org/10.13448/j.cnki.jalre.2017.023

    Article  Google Scholar 

  30. 30

    A. N. Oo, C. B. Iwai, and P. Saenjan, “Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms,” Land Degrad. Dev. 26 (3), 300–310 (2013). doi 101002/ldr2208.

  31. 31

    D. L. Qing, S. L. Wang, Y. H. Liu, J. J. Nie, N. Zhao, L. L. Mao, X. L. Song, X. Z. Sun, “Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil,” Acta Agron. Sin. 43 (7), 1030–1042 (2017).

    Article  Google Scholar 

  32. 32

    R. Smith, D. Tongway, M. Tighe, and N. Reid, “When does organic carbon induce aggregate stability in vertosols?” Agric. Ecosyst. Environ. 201 (3), 92–100 (2015).https://doi.org/10.1016/j.agee.2014.12.002

    Article  Google Scholar 

  33. 33

    R. Spaccini, J. S. C. Mbagwu, P. Conte, and A. Piccolo, “Changes of humic substances characteristics from forested to cultivated soils in Ethiopia,” Geoderma 132, 9–19 (2006). https://doi.org/10.1016/j.geoderma.2005.04.015

    Article  Google Scholar 

  34. 34

    C. Spanò, M. Balestri, S. Bottega, I. Grilli, L. M. C. Forino, and D. Ciccarelli, “Anthemis maritima l. in different coastal habitats: a tool to explore plant plasticity,” Estuarine, Coastal Shelf Sci. 129, 105–111 (2013). https://doi.org/10.1016/j.ecss.2013.06.005

    Article  Google Scholar 

  35. 35

    B. A. Summerell and L. W. Burgess, “Decomposition and chemical composition of cereal straw,” Soil Biol. Biochem. 21 (4), 551–559 (1989). https://doi.org/10.1016/0038-0717(89)90129-6

    Article  Google Scholar 

  36. 36

    Y. T. Sun, L. R. Zhou, Q. F. Meng, J. Zhao, and M. A. Xian-Fa, “Effects of long-term manure application on distribution of soil water-stable aggregated organic carbon and nitrogen in meadow alkaline soils,” Soil Fertil. Sci. China 33 (1), 6–85 (2014).

    Google Scholar 

  37. 37

    M. Tejada, C. Garcia, J. L. Gonzalez, and M. T. Hernandez, “Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil,” Soil Biol. Biochem. 38 (6) 1413–1421 (2006).https://doi.org/10.1016/j.soilbio.2005.10.017

    Article  Google Scholar 

  38. 38

    D. J. Walker and M. P. Bernal, “The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil,” Bioresour. Technol. 99 (2), 396–403 (2007). https://doi.org/10.1016/j.biortech.2006.12.006

    Article  Google Scholar 

  39. 39

    L. Wang, X. Sun, S. Li, T. Zhang, W. Zhang, and P. Zhai, “Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth,” PloS One 9 (2), e89185 (2014). https://doi.org/10.1371/journal.pone.0089185

    Article  Google Scholar 

  40. 40

    Y. U. Yan, M. J. Xia, D. Y. Pei, and L. U. Zhao-Hua, “Effects of organic amendments on severe saline soil nutrient content and reed growth under wastewater irrigation,” Chin. J. Eco-Agric. 21 (4), 448 (2013).

    Google Scholar 

  41. 41

    K. Yu, H. Feng, Y. Zhao, and Q. G. Dong, “Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency,” Trans. Chin. Soc. Agric. Eng. 31 (19), 103–111 (2015).

    Google Scholar 

  42. 42

    Q. H. Zhan, C. L. Yuan, and X. P. Zhang, “Ameliorative effect and mechanism of organic materials on Vertisol,” Acta Pedol. Sin. 40 (3), 420–425 (2003).

    Google Scholar 

  43. 43

    J. C. Zhang, Y. Y. Liu, H. He, L. Ren, and Z. M. Zhang, “Research advances on mechanism of organic carbon sequestration in soil aggregates,” Fujian J. Agric. Sci. 31 (3), 319–325 (2016).https://doi.org/10.19303/j.issn.1008-0384.2016.03.021

    Article  Google Scholar 

  44. 44

    Y. W. Zhang, W. B. Mao, H. M. Liu, Y. X. Sun, L. M. Jia, and Q. K. Zheng, “Effects of straw turnover on physical properties of coastal saline clay and cotton yield,” Chin. Agric. Sci. Bull. 6, 75–80 (2016).

    Article  Google Scholar 

  45. 45

    L. Zhao and C. T. Liu, “Effects of different organic materials on soil fertility and aggregates stability,” J. Northw. A & F Univ. 19 (6), 107–118 (2013). https://doi.org/10.13207/j.cnki.jnwafu.2013.02.014

Download references


This work was supported by the Key Research Program of the Science and Technology Agency of Jilin Province, China (20190301018NY). This work was supported by the National Key Research and Development Program of China (2018YFD0300203, 2017YFD0201801).

Author information



Corresponding author

Correspondence to Jinggui Wu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiaodong Chen, Yaa, O. & Wu, J. Effects of Different Organic Materials Application on Soil Physicochemical Properties in a Primary Saline-Alkali Soil. Eurasian Soil Sc. 53, 798–808 (2020). https://doi.org/10.1134/S1064229320060034

Download citation


  • coarse corn straw
  • granular corn straw
  • irrigation
  • morphology of organic material