Skip to main content
Log in

Morphology, Radiocarbon Age, and Genesis of Vertisols of the Eisk Peninsula (the Kuban–Azov Lowland)

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Data on the morphology and radiocarbon ages of humus of dark vertic quasigley nonsaline clayey soils with alternating bowl-shaped (Pellic Vertisols (Humic, Stagnic)) and diapiric (Haplic Vertisols (Stagnic, Protocalcic)) structures are discussed, and the genetic concept for these soils is suggested. The studied soils develop on loesslike medium clay in the bottom of a large closed depression on the Eisk Peninsula in the lowest western part of the Kuban–Azov Lowland. The lateral and vertical distribution of humus in the studied gilgai catena displays a lateral transition of a relatively short humus profile of the accumulative type with a maximum near the surface and with a sharp increase in 14C dates of humus in the deeper layers within the diapiric structure to the extremely deep humus profile with a maximum at the depth of 40–80 cm, with similar mean residence time of carbon within this maximum, and with a three times slower increase in 14C dates of humus down the profile within the bowl-shaped structure. The development of the gilgai soil combination is specified by the joint action of the lateral–upward squeezing of the material of the lower horizons from the nodes with an increased horizontal stress toward the zones a decreased horizontal stress, local erosional loss of soil material from the microhighs and its accumulation in the adjacent microlows, leaching of carbonates from the humus horizons in the microlows, and the vertical and lateral ascending capillary migration of the soil solutions with precipitation of calcium carbonates in the soils of microhighs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  2. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  3. E. A. Kornblyum, I. S. Mikhailov, N. A. Nogina, and V. O. Targulian, Basic Scales of the Properties of Morphological Soil Elements (Dokuchaev Soil Science Inst., Moscow, 1982) [in Russian].

    Google Scholar 

  4. Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  5. N. B. Khitrov, Genesis, Diagnostics, Properties, and Functioning of Clayey Swelling Soils of the Central Cis-Caucasus (Dokuchaev Soil Science Inst., Moscow, 2003) [in Russian].

    Google Scholar 

  6. N. B. Khitrov, V. P. Vlasenko, and L. V. Rogovneva, “Statistic indices for bowl-and diapir-like morphostructures in Vertisols of Vorontsovka pad’,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 77, 3–28 (2015).

    Google Scholar 

  7. O. A. Chichagova, Radiocarbon Dating of Soil Humus (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  8. O. A. Chichagova, “Modern trends in radiocarbon studies of soil organic matter,” Pochvovedenie, No. 1, 99–110 (1996).

    Google Scholar 

  9. O. A. Chichagova, O. S. Khokhlova, E. P. Zazovskaya, and S. V. Goryachkin, “Radiocarbon analysis and soil memory,” in Soil Memory: Soil as a Memory of Biosphere–Geosphere–Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryachkin (LKI, Moscow, 2008), Chap. 7, pp. 182–204.

    Google Scholar 

  10. Evolution of Soils and the Soil Cover: Theory, Diversity of Natural Evolution and Anthropogenic Transformation of Soils, Ed. by V. N. Kudeyarov and I. V. Ivanov (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  11. S. Arai, T. Hatta, U. Tanaka, K. Hayamizu, K. Kigoshi, and O. Ito, “Characterization of the organic components of an Alfisol and a Vertisol in adjacent locations in Indian semi-arid tropics using optical spectroscopy, 13C NMR spectroscopy, and 14C dating,” Geoderma 69 (1–2), 59–70 (1996).

    Google Scholar 

  12. P. Becker-Heidmann, O. Andresen, D. Kalmar, H. W. Scharpenseel, and D. H. Yaalon, “Carbon dynamics in Vertisols as revealed by high-resolution sampling,” Radiocarbon 44 (1), 63–73 (2002).

    Article  Google Scholar 

  13. G. Blackburn, J. R. Sleeman, and H. W. Scharpenseel, “Radiocarbon measurements and soil micromorphology as guides in the formation of gilgai at Kaniva, Victoria,” Austral. J. Soil Res. 17, 1–15 (1979).

    Article  Google Scholar 

  14. C. Castanha, S. Trumbore, and R. Amundson, “Methods of separating soil carbon pools affect the chemistry and turnover time of isolated fractions,” Radiocarbon 50, 83–97 (2008).

    Article  Google Scholar 

  15. C. E. Coulombe, L. P. Wilding, and J. B. Dixon, “Overview of Vertisols: characteristics and impacts on society,” Adv. Agron. 57, 289–375 (1996).

    Article  Google Scholar 

  16. H. Eswaran, F. H. Beinroth, P. F. Reich, and L. A. Quandt, “Vertisols: their properties, classification, distribution and management,” in The Guy D. Smith Memorial Slide Collection (US Department of Agriculture, Washington, 1999).

    Google Scholar 

  17. J. B. Gaudinski, S. E. Trumbore, E. A. Davidson, and S. H. Zheng, “Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes,” Biogeochemistry 51, 33–69 (2000).

    Article  Google Scholar 

  18. E. G. Hallsworth, G. K. Robertson, and F. R. Gibbons, “Studies in pedogenesis in New South Wales. VII. The “gilgai” soils,” J. Soil Sci. 6 (1), 1–31 (1955).

    Article  Google Scholar 

  19. USS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  20. D. S. Jenkinson, D. E. Adams, and A. Wild, “Model estimates of CO2 emissions from soil in response to global warming,” Nature 351, 351–304 (1991).

    Article  Google Scholar 

  21. N. Khitrov, L. Rogovneva, Y. Cheverdin, D. Rukhovich, and V. Vlasenko, “Types and distribution of soil cover patterns with gilgai topography in Russia,” International Soil Science Congress on “Soil Science in International Year of Soils 2015”, October 19–23, 2015, Abstracts of Papers (Sochi, 2015), pp. 206–208.

    Google Scholar 

  22. I. Kovda, W. Lynn, D. Williams, and O. Chichagova, “Radiocarbon age of Vertisols and its interpretation using data on gilgai complex in the North Caucasus,” Radiocarbon 43 (2), 603–609 (2001).

    Article  Google Scholar 

  23. I. Kovda, E. Morgun, and T. W. Boutton, “Vertic process and specificity of organic matter properties and distribution on Vertisols,” Eurasian Soil Sci. 43, 1467–1476 (2010).

    Article  Google Scholar 

  24. W. F. Libby, Radiocarbon Dating (Univ. of Chicago Press, Chicago, 1955).

    Google Scholar 

  25. B. Maxwell, “Influence of horizontal stresses on gilgai landforms,” J. Geotech. Eng. 120, 1437–1444 (1994).

    Article  Google Scholar 

  26. B. Maxwell, “The origin of hog-wallows and gilgai landforms—Part 1, 2013. http://thecosmiccornerblogspotru/2013/10/the-origin-of-hogwalllows-and-gilgai.html.

    Google Scholar 

  27. W. G. Mook and J. van der Plicht, “Reporting 14C activities and concentrations,” Radiocarbon 41, 227–239 (1999).

    Article  Google Scholar 

  28. D. C. Olk and E. G. Gregorich, “Overview of the symposium proceedings, “Meaningful pools in determining soil carbon and nitrogen dynamics,” Soil Sci. Soc. Am. J. 70, 967–974 (2006).

    Article  Google Scholar 

  29. W. J. Parton, D. S. Schimel, C. V. Cole, and D. S. Ojima, “Analysis of factors controlling soil organic matter levels in Great Plains grasslands,” Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).

    Article  Google Scholar 

  30. I. R. Paton, “Origin and terminology for gilgai in Australia,” Geoderma 11, 221–242 (1974).

    Article  Google Scholar 

  31. E. Paul, S. Morris, R. Conant, and A. Plante, “Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools?” Soil Sci. Soc. Am. J. 70, 1023–1035 (2006).

    Article  Google Scholar 

  32. P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C.E. Buck, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, I. Hajdas, C. Hatté, T. J. Heaton, H. Haflidason, et al., “Intcal13 and Marine13 Radiocarbon age calibration curves 0–50.000 years cal BP,” Radiocarbon 55 (3), 1869–1887 (2013).

    Article  Google Scholar 

  33. H. W. Scharpenseel and P. Becker-Heidman, “Shifts in 14C patterns of soil profiles due to bomb carbon, including effects of morphogenetic and turbation processes,” Radiocarbon 31 (3), 627–636(1989).

    Article  Google Scholar 

  34. H. W. Scharpenseel and P. Becker-Heidman, “Twentyfive years of radiocarbon dating soils: Paradigm of erring and learning,” Radiocarbon 34 (3), 541–549 (1992).

    Article  Google Scholar 

  35. H. W. Scharpenseel, F. Pietig, H. Schiffman, and P. Becker-Heidman, “Radiocarbon dating of soils: database contribution by Bonn and Hamburg,” Radiocarbon 38 (2), 277–293 (1996).

    Article  Google Scholar 

  36. H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements III,” Radiocarbon 12 (1), 19–39 (1970).

    Article  Google Scholar 

  37. H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements IV,” Radiocarbon 13 (2), 189–212 (1971).

    Article  Google Scholar 

  38. H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements V,” Radiocarbon 15 (1), 13–41 (1973).

    Article  Google Scholar 

  39. H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements VI,” Radiocarbon 15 (2), 252–279 (1973).

    Article  Google Scholar 

  40. H. W. Scharpenseel, F. Pietig, and H. Schiffman, “Hamburg University radiocarbon dates I,” Radiocarbon 18 (3), 268–289 (1976).

    Article  Google Scholar 

  41. H. W. Scharpenseel, H. Schiffman, and P. Becker, “Hamburg University radiocarbon dates IV,” Radiocarbon 26 (3), 367–383 (1984).

    Article  Google Scholar 

  42. H. W. Scharpenseel, H. Schiffman, and B. Hintze, “Hamburg University radiocarbon dates III,” Radiocarbon 26 (2), 196–205 (1984).

    Article  Google Scholar 

  43. S. Stephan, J. Berrier, A. A. De Petre, C. Jeanson, M. J. Kooistra, H. W. Scharpenseel and H. Schiffman, “Characterization of in situ organic matter constituents in Vertisols from Argentina, using submicroscopic and cytochemical methods: first report,” Geoderma 30, 21–34 (1983).

    Article  Google Scholar 

  44. M. Stuiver and H. Polach, “Discussion: reporting of 14C data,” Radiocarbon 19 (3), 355–363 (1977).

    Article  Google Scholar 

  45. M. S. Torn, P. M. Vitousek, and S. E. Trumbore, “The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling,” Ecosystems 8, 352–372 (2005).

    Article  Google Scholar 

  46. S. E. Trumbore, “Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements,” Global Biogeochem. Cycles 7, 275–290 (1993).

    Article  Google Scholar 

  47. S. Trumbore, “Radiocarbon and soil carbon dynamics,” Ann. Rev. Earth Planet. Sci. 37, 47–66 (2009).

    Article  Google Scholar 

  48. S. E. Trumbore, J. S. Vogel, and J. R. Southon, “AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle,” Radiocarbon 31, 644–654 (1989).

    Article  Google Scholar 

  49. S. E. Trumbore and S. H. Zheng, “Comparison of fractionation methods for soil organic matter C-14 analysis,” Radiocarbon 38, 219–229 (1996).

    Article  Google Scholar 

  50. M. von Lutzowa, I. Kogel-Knabner, K. Ekschmittb, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  51. Vertisols: Their Distribution, Properties, Classification and Management, Ed. by L. P. Wilding and R. Puentes (Texas A&M Univ., College Station, TX, 1988).

    Google Scholar 

  52. D. H. Yaalon and D. Kalmar, “Dynamics of cracking and swelling clay soils: displacement of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation,” Earth Surf. Process. 3, 31–42 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Khitrov.

Additional information

Original Russian Text © N.B. Khitrov, E.P. Zazovskaya, L.V. Rogovneva, 2018, published in Pochvovedenie, 2018, No. 7, pp. 773–786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B., Zazovskaya, E.P. & Rogovneva, L.V. Morphology, Radiocarbon Age, and Genesis of Vertisols of the Eisk Peninsula (the Kuban–Azov Lowland). Eurasian Soil Sc. 51, 731–743 (2018). https://doi.org/10.1134/S1064229318070050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318070050

Keywords

Navigation