Advertisement

Eurasian Soil Science

, Volume 51, Issue 4, pp 434–447 | Cite as

Biologically Active Organic Matter in Soils of European Russia

  • V. M. Semenov
  • B. M. Kogut
  • N. B. Zinyakova
  • N. P. Masyutenko
  • L. S. Malyukova
  • T. N. Lebedeva
  • A. S. Tulina
Soil Biology
  • 18 Downloads

Abstract

Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus–peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300–600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75–150 mg C/100 g) to the high (150–300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35–75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2–11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0–20 cm and from 1.0 to 12.4/ha in the layer of 0–50 cm of different soil types.

Keywords

zonal soils carbon active organic matter pool CO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Borisov and N. F. Ganzhara, “Geographical features of the distribution and renewal of easily decomposable organic matter in virgin and arable zonal soils of European Russia,” Eurasian Soil Sci. 41, 946–952 (2008).CrossRefGoogle Scholar
  2. 2.
    L. A. Grishina, Humification and Humic Status of Soils (Moscow State Univ., Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    State Register of Soil Resources of Russia, Version 1.0 (Dokuchaev Soil Science Inst., Moscow, 2014) [in Russian].Google Scholar
  4. 4.
    N. B. Zinyakova, A. K. Khodzhaeva, A. S. Tulina, and V. M. Semenov, “Active organic matter of gray forest soils of arable and fallow lands,” Agrokhimiya, No. 9, 3–14 (2013) [in Russian].Google Scholar
  5. 5.
    I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44, 1077–1089 (2011).CrossRefGoogle Scholar
  6. 6.
    Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].Google Scholar
  7. 7.
    B. M. Kogut, M. A. Yashin, V. M. Semenov, T. N. Avdeeva, L. G. Markina, S. M. Lukin, and S. I. Tarasov, “Distribution of transformed organic matter in structural units of loamy sandy soddypodzolic soil,” Eurasian Soil Sci. 49, 45–55 (2016). doi 10.1134/S1064229316010075CrossRefGoogle Scholar
  8. 8.
    M. M. Kononova, Organic Soil Matter: Nature, Properties, and Study Methods (Academy of Sciences of the USSR, Moscow, 1963) [in Russian].Google Scholar
  9. 9.
    A. M. Kuznetsov, L. A. Ivannikova, V. Yu. Semin, S.M. Nadezhkin, and V. M. Semenov, “Influence of the long-term application of fertilizers on the biological quality of organic matter in leached chernozem,” Agrokhimiya, No. 11, 21–31 (2007) [in Russian].Google Scholar
  10. 10.
    V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Evdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenyu, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and C. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45, 68–79 (2012).CrossRefGoogle Scholar
  12. 12.
    A. A. Larionova, B. N. Zolotareva, Yu. G. Kolyagin, A. K. Kvitkina, V. V. Kaganov, and V. N. Kudeyarov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eur asian Soil Sci. 48, 1110–1119 (2015). doi 10.1134/ S1064229315100063CrossRefGoogle Scholar
  13. 13.
    D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].Google Scholar
  15. 15.
    V. V. Ponomareva and T. A. Plotnikova, Humus and Pedogenesis: Methods and Results of Study (Nauka, Leningrad, 1980) [in Russian].Google Scholar
  16. 16.
    V. M. Semenov, N. S. Zhuravlev, and A. S. Tulina, “Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts,” Eurasian Soil Sci. 48, 1136–1148 (2015). doi 10.1134/S1064229315100105CrossRefGoogle Scholar
  17. 17.
    V. M. Semenov, L. A. Ivannikova, and T. V. Kuznetsova, “Structural-functional status of soil organic matter,” in Soil Processes and Spatiotemporal Organization of Soils (Nauka, Moscow, 2006), pp. 230–247 [in Russian].Google Scholar
  18. 18.
    V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. S. Tulina, “Mineralization of organic matter and the carbon sequestration capacity of zonal soils”, Eurasian Soil Sci. 41, 717–730 (2008).CrossRefGoogle Scholar
  19. 19.
    V. M. Semenov, L. A. Ivannikova, and A. S. Tulina, “Stabilization of soil organic matter”, Agrokhimiya, No. 10, 77–96 (2009) [in Russian].Google Scholar
  20. 20.
    V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].Google Scholar
  21. 21.
    V. M. Semenov, B. M. Kogut, and S. M. Lukin, “Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool,” Eurasian Soil Sci. 47, 276–286 (2014). doi 10.1134/S1064229314040073CrossRefGoogle Scholar
  22. 22.
    V. M. Semenov, B. M. Kogut, S. M. Lukin, I. N. Sharkov, I. V. Rusakova, A. S. Tulina, and V. I. Lazarev, “Evaluation of soil supply with active organic matter according to the results of long-term field experiments,” Agrokhimiya, No. 3, 19–31 (2013) [in Russian].Google Scholar
  23. 23.
    V. M. Semenov and A. S. Tulina, “Comparison of the pools of mineralizable organic matter in soils of natural and agricultural ecosystems,” Agrokhimiya, No. 12, 53–63 (2011) [in Russian].Google Scholar
  24. 24.
    V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review”, Eurasian Soil Sci. 46, 355–368 (2013). doi 10.1134/S106422931304011XCrossRefGoogle Scholar
  25. 25.
    M. V. Semenov, N. A. Manucharova, and A. L. Stepanov, “Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil,” Eurasian Soil Sci. 49, 217–225 (2016). doi 10.1134/S1064229316020101CrossRefGoogle Scholar
  26. 26.
    E. V. Stolnikova, N. D. Ananyeva, and O. V. Chernova, “The microbial biomass and its activity and structure in the soils of old forests in the European Russia,” Eurasian Soil Sci. 44, 437–452 (2011).CrossRefGoogle Scholar
  27. 27.
    A. S. Tulina and V. M. Semenov, “Evaluation of the sensitivity of the mineralizable pool of soil organic matter to changes in temperature and moisture,” Eurasian Soil Sci. 48, 831–840 (2015). doi 10.1134/S1064229315080104CrossRefGoogle Scholar
  28. 28.
    A. S. Tulina, V. M. Semenov, N. N. Tsybul’ka, T. P. Shapsheeva, A. A. Zaitsev, and T. V. Arastovich, “The role of mineralization of the organic matter of soddy-podzolic and peat bog soils in the accumulation of 137Cs by plants,” Eurasian Soil Sci. 43, 1109–1119 (2010).CrossRefGoogle Scholar
  29. 29.
    I. V. Tyurin, Organic Matter of Soils and Its Role in Pedogenesis and Fertility: The theory about Soil Humus (Sel’khozgiz, Moscow, 1937) [in Russian].Google Scholar
  30. 30.
    S. N. Chukov, A. G. Ryumin, A. S. Koposov, and M. S. Golubkov, “Profile organization of organization of organic matter of anthropogenically transformed forest-steppe soils,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 4, 76–89 (2005) [in Russian].Google Scholar
  31. 31.
    A. K. Khodzhaeva and V. M. Semenov, “Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems,” Eurasian Soil Sci. 48, 1361–1369 (2015). doi 10.1134/S1064229315120108CrossRefGoogle Scholar
  32. 32.
    V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of humic acids in zonal soils from 13C NMR data,” Eurasian Soil Sci. 44, 976–983 (2011).CrossRefGoogle Scholar
  33. 33.
    K. G. Eilers, S. Debenport, S. Anderson, and N. Fierer, “Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil,” Soil Biol. Biochem. 50, 58–65 (2012). doi 10.1016/j.soilbio. 2012.03.011CrossRefGoogle Scholar
  34. 34.
    M. F. E. Lavahun, R. G. Joergensen, and B. Meyer, “Activity and biomass of soil microorganisms at different depths,” Biol. Fertil. Soils 23, 38–42 (1996). doi 10.1007/BF00335816CrossRefGoogle Scholar
  35. 35.
    F. Magdoff and R. R. Weil, “Soil organic matter management strategies,” in Soil Organic Matter in Sustainable Agriculture, Ed. by F. Magdoff and R.R. Weil (CRC Press, Boca Raton, 2004), pp. 45–65. doi 10.1201/9780203496374.ch2CrossRefGoogle Scholar
  36. 36.
    C. Rumpel and I. Kögel-Knabner, “Deep soil organic matter—a key but poorly understood component of terrestrial C cycle,” Plant Soil 338, 143–158 (2011). doi 10.1007/s11104-010-0391-5CrossRefGoogle Scholar
  37. 37.
    J. O. Skjemstad, L. J. Janik, and J. A. Taylor, “Non-living soil organic matter: what do we know about it?” Austral. J. Exper. Agric. 38, 667–680 (1998). http:// dx.doi.org/. doi 10.1071/EA97143CrossRefGoogle Scholar
  38. 38.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Semenov
    • 1
  • B. M. Kogut
    • 2
  • N. B. Zinyakova
    • 1
  • N. P. Masyutenko
    • 3
  • L. S. Malyukova
    • 4
  • T. N. Lebedeva
    • 1
  • A. S. Tulina
    • 1
  1. 1.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia
  2. 2.Dokuchaev Soil Science InstituteMoscowRussia
  3. 3.All-Russia Research Institute of Arable Farming and Soil Erosion ControlKurskRussia
  4. 4.All-Russia Research Institute of Floriculture and Subtropical CropsSochiRussia

Personalised recommendations