Advertisement

Eurasian Soil Science

, Volume 51, Issue 4, pp 418–427 | Cite as

Rheological Properties of Automorphic and Semihydromorphic Cryometamorphic Northern Taiga Soils in Northeastern European Russia (Komi Republic)

  • Yu. V. Kholopov
  • D. D. Khaidapova
  • E. M. Lapteva
Soil Physics
  • 9 Downloads

Abstract

Soil pastes at the water content corresponding to the maximum swelling of samples from different genetic horizons of cryometamorphic soils―surface-gleyic iron-illuvial svetlozem (Folic Albic Stagnosol) and peaty and peat humus-impregnated gleyic svetlozems (Histic Gleyic Stagnosols)―have been studied with an MCR-302 modular rheometer (Anton Paar, Austria). It has been found that the strongest interparticle bonds are formed in the horizons of cryometamorphic soils characterized by high contents of humic substances and organomineral Al–Fe–humus compounds. These are horizons of podzol microprofile (Eg and BHF) in iron-illuvial svetlozem and a humus-impregnated horizon (ELhi,g) in peaty and peat svetlozems. Organomineral Al–Fe–humus compounds, as well as the seasonal freezing of soils, determine the elastic-brittle character of interparticle interactions. The contents of clay fractions, exchangeable bases, and organic and organomineral substances impart viscoelastic properties to these contacts. An enhancement of elastic-brittle properties of soil is observed under the impact of gleying and freezing. The threefold decrease of the structural interaction parameter (∫Z) when going from automorphic to semihydromorphic conditions indicates a decrease in the resistance of peaty and peat svetlozems to mechanical loads under increasing hydromorphism compared to iron-illuvial svetlozems.

Keywords

northern taiga cryometamorphic soils hydromorphism structuring rheology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Abrukova and A. S. Manucharov, “Rheological characteristics of surface gley soils,” Pochvovedenie, No. 9, 44–52 (1986).Google Scholar
  2. 2.
    L. P. Abrukova, “Analysis of thixotropic properties of soils using RV-8 rotational viscosimeter,” Pochvovedenie, No. 8, 83–114 (1970).Google Scholar
  3. 3.
    I. B. Archegova, “Effect of freezing on sorption, composition, and properties of humic substances,” Pochvovedenie, No. 11, 39–51 (1979).Google Scholar
  4. 4.
    Atlas of Soils of the Republic of Komi (Komi Respublikanskaya Tipogr., Syktyvkar, 2010) [in Russian].Google Scholar
  5. 5.
    A. G. Bolotov, “Measurement of rheological properties of soil by a rheometer,” Dal’nevost. Agrarn. Vestn., No. 3, 13–17 (2015).Google Scholar
  6. 6.
    T. T. Efremova, Structuring in Peat Soils (Nauka, Novosibirsk, 1992) [in Russian].Google Scholar
  7. 7.
    I. V. Zaboeva, Soils and Land Resources of the Komi ASSR (Komi Knizhn. Izd., Syktyvkar, 1975) [in Russian].Google Scholar
  8. 8.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  9. 9.
    F. R. Zaidel’man, Genesis and Ecological Basis of Melioration of Soils and Landscapes (Universitet, Moscow, 2009) [in Russian].Google Scholar
  10. 10.
    Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  11. 11.
    B. G. Rozanov, Soil Morphology (Akademicheskii Proekt, Moscow, 2004) [in Russian].Google Scholar
  12. 12.
    Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].Google Scholar
  13. 13.
    E. V. Shein, E. Yu. Milanovskii, D. D. Khaidapova, A. V. Dembovetskii, and Z. N. Tyugai, “New devices for analysis of physical properties of soils: 3D tomography, rheological parameters, and contact angle,” Vestn. Altai. Gos. Agrar. Univ., No. 5 (115), 44–48 (2014).Google Scholar
  14. 14.
    D. D. Khaidapova, V. V. Chestnova, E. V. Shein, and E. Yu. Milanovskii, “Rheological properties of typical chernozems (Kursk oblast) under different land uses,” Eurasian Soil Sci. 49, 890–897 (2016). doi 10.1134/ S1064229316080044CrossRefGoogle Scholar
  15. 15.
    D. D. Khaydapova, Yu. V. Kholopov, I. V. Zaboeva, and E. M. Lapteva, “Rheological features of the coagulative structure of northern taiga peaty podzolic gleyed soils of the European Northeast,” Moscow Univ. Soil Sci. Bull. 69 (1), 17–22 (2014).CrossRefGoogle Scholar
  16. 16.
    T. G. Mezger, The Rheology Handbook (Vincentz Network, Hanover, 2011).Google Scholar
  17. 17.
    W. Markgraf, R. Horn, and S. Peth, “An approach to rheometry in soil mechanics—structural changes in bentonite, clayey and silty soils,” Soil Tillage Res. 91, 1–14 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Kholopov
    • 1
  • D. D. Khaidapova
    • 2
  • E. M. Lapteva
    • 1
  1. 1.Institute of Biology, Komi Science Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations