Advertisement

Eurasian Soil Science

, Volume 51, Issue 4, pp 407–417 | Cite as

Evaluation of the Migration Capacity of Zn in the Soil–Plant System

  • V. S. Anisimov
  • L. N. Anisimova
  • L. M. Frigidova
  • D. V. Dikarev
  • R. A. Frigidov
  • Yu. N. Korneev
  • A. I. Sanzharov
  • S. P. Arysheva
Soil Chemistry
  • 19 Downloads

Abstract

The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.

Keywords

zinc soil barley mobility concentration potential buffering capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    Yu. V. Alekseev, Heavy Metals in Soils and Plants (Agropromizdat, Leningrad, 1987) [in Russian].Google Scholar
  3. 3.
    V. S. Anisimov, L. N. Anisimova, L. M. Frigidova, D. V. Dikarev, R. A. Frigidov, I. V. Kochetkov, and N. I. Sanzharova, “Evaluation of migration capacity of Zn in the soil–plant system,” Biogeosyst. Techn. 4 (2), 153–163 (2015). doi 10.13187/bgt.2015.4.153. http:// www.ejournal19.com.10.13187/bgt.2015.4.153CrossRefGoogle Scholar
  4. 4.
    V. S. Anisimov, I. V. Kochetkov, D. V. Dikarev, L. N. Anisimova, Yu. N. Korneev, and L. M. Frigidova, “Effect of the physicochemical parameters of soils on the biological availability of natural and radioactive zinc,” Eurasian Soil Sci. 49, 868–878 (2016). doi 10.1134/S1064229316080020CrossRefGoogle Scholar
  5. 5.
    V. S. Anisimov, N. I. Sanzharova, L. N. Anisimova, S. A. Geras’kin, D. V. Dikarev, L. M. Frigidova, R. A. Frigidov, and N. V. Belova, “Evaluation of migration capacity and phytotoxicity of Zn in the soil–plant system,” Agrokhimiya, No. 1, 64–74 (2013).Google Scholar
  6. 6.
    E. V. Arinushkina, Chemical Analysis of Soils and Grounds (Moscow State Univ., Moscow, 1970) [in Russian].Google Scholar
  7. 7.
    M. A. Bardyshev, Mineral Nutrition of Potato Plants (Nauka i Tekhnika, Minsk, 1984) [in Russian].Google Scholar
  8. 8.
    V. N. Bashkin and N. S. Kasimov, Biogeochemistry (Nauchnyi Mir, Moscow, 2004) [in Russian].Google Scholar
  9. 9.
    I. V. Gulyakin and E. V. Yudintseva, Agricultural Radiobiology (Kolos, Moscow, 1973) [in Russian].Google Scholar
  10. 10.
    A. W. Galston, P. S. Davis, and R. L. Satter, The Life of the Green Plant (Prentice-Hall, New Jersey, 1980; Mir, Moscow, 1983).Google Scholar
  11. 11.
    D. V. Dubovik and E. V. Dubovik, “Heavy metals in ordinary chernozems on slopes of different gradients and aspects,” Eurasian Soil Sci. 49, 33–44 (2016). doi 10.1134/S1064229316010051CrossRefGoogle Scholar
  12. 12.
    V. B. Il’in, “Assessment of soil buffer capacity with respect to heavy metals,” Agrokhimiya, No. 10, 109–113 (1995).Google Scholar
  13. 13.
    A. L. Kovalevskii, Doctoral Dissertation in Geology-Mineralogy (Moscow, 1983).Google Scholar
  14. 14.
    J. Koolman and K.-H. Röhm, Biochemie mit Vielen Bildern (Thieme, Stuttgart, 1996; Mir, Moscow, 2000).Google Scholar
  15. 15.
    S. V. Kruglov, V. S. Anisimov, G. V. Lavrent’eva, and L. N. Anisimova, “Parameters of selective sorption of Co, Cu, Zn, and Cd by a soddy-podzolic soil and a chernozem,” Eurasian Soil Sci. 42, 385–393 (2009).CrossRefGoogle Scholar
  16. 16.
    D. V. Ladonin and O. V. Plyaskina, “Mechanisms of Cu(II), Zn(II), Pb(II) sorption by soddy-podzolic soil,” Eurasian Soil Sci. 37, 460–468 (2004).Google Scholar
  17. 17.
    S. S. Mandzhieva, T. M. Minkina, G. V. Motuzova, S. E. Golovatyi, N. N. Miroshnichenko, N. K. Lukashenko, and A. I. Fateev, “Fractional and group composition of zinc and lead compounds as an indicator of the environmental status of soils,” Eurasian Soil Sci. 47, 511–518 (2014). doi 10.1134/S1064229314050159CrossRefGoogle Scholar
  18. 18.
    S. S. Medvedev, The Plant Physiology (St. Petersburg State Univ., St. Petersburg, 2004) [in Russian].Google Scholar
  19. 19.
    Methodological Recommendations for Determination of Heavy Metals in Agricultural Soils and Products (Central Scientific Research Institute of Agrochemical Service, Moscow, 1992) [in Russian].Google Scholar
  20. 20.
    G. V. Motuzova, Compounds of Trace Elements in Soils: System Organization, Ecological Value, and Monitoring (Editorial URSS, Moscow, 1999) [in Russian].Google Scholar
  21. 21.
    P. H. Nye and P. B. Tinker, Solute Movement in the Soil-Root System (Blackwell, Oxford, 1977; Kolos, Moscow, 1980).Google Scholar
  22. 22.
    O. V. Nesterova, V. G. Tregubova, and V. A. Semal, “Use of regulatory documents for assessing the contamination of soils with heavy metals, Eurasian Soil Sci. 47, 1161–1166 (2014). doi 10.1134/S1064229314110088CrossRefGoogle Scholar
  23. 23.
    R. I. Pervunina and N. G. Zyrin, “Migration of cadmium compounds in modeled agrobiocenosis,” Proceedings of the Second All-Russia Conference “Migration of Pollutants in Soils and Adjacent Media” (Obninsk, 1978), pp. 182–191.Google Scholar
  24. 24.
    A. I. Perel’man, Geochemistry of Landscape (Vysshaya Shkola, Moscow, 1975) [in Russian].Google Scholar
  25. 25.
    D. L. Pinskii, Ion Exchange in Soils (Pushchino, 1997) [in Russian].Google Scholar
  26. 26.
    Practicum on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  27. 27.
    N. L. Rashkovich, “Modeling of mineral nutrition of the plants by regression analysis,” Agrokhimiya, No. 6, 97–106 (1995).Google Scholar
  28. 28.
    G. Ya. Rin’kis, Kh. K. Ramane, G. V. Paegle, and T. A. Kunitskaya, Optimization System and Diagnostics of Mineral Nutrition of the Plants (Zinatne, Riga, 1989) [in Russian].Google Scholar
  29. 29.
    T. A. Sokolova, I. I. Tolpeshta, and S. Ya. Trofimov, Soil Acidity. Acid-Base Buffering of Soils. Aluminum Compounds in Solid Phase of Soil and in Soil Solution (Grif i K, Tula, 2012) [in Russian]Google Scholar
  30. 30.
    T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange: Manual on Some Issues of Soil Chemistry (Grif i K, Tula, 2009) [in Russian].Google Scholar
  31. 31.
    R. A. Frigidov, V. S. Anisimov, L. M. Frigidova, S. A. Geras’kin, L. N. Anisimova, Yu. N. Korneev, and N. I. Sanzharova, “Influence of Zn concentration in soils on accumulation of biomass and metals in the barley plants,” Agrokhimiya, No. 12, 42–54 (2014).Google Scholar
  32. 32.
    Chemistry of Heavy Metals, Arsenic, and Molybdenum in Soils, Ed. by N. G. Zyrin and L. K. Sadovnikova (Moscow State Univ., Moscow, 1985) [in Russian].Google Scholar
  33. 33.
    Zinc and Cadmium in the Environment, Ed. by V. V. Dobrovol’skii (Nauka, Moscow, 1992) [in Russian].Google Scholar
  34. 34.
    N. A. Chernykh, N. Z. Milashchenko, and V. F. Ladonin, Exotoxicological Aspects of Soil Pollution by Heavy Metals (Agrokonsalt, Moscow, 1999) [in Russian].Google Scholar
  35. 35.
    V. N. Yakimenko and G. A. Konarbaeva, “Transformation of the pool of heavy metals in gray forest soils of agrocenoses,” Agrokhimiya, No. 4, 61–69 (2016).Google Scholar
  36. 36.
    V. S. Anisimov, I. V. Kochetkov, D. V. Dikarev, L. N. Anisimova, and Y. N. Korneev, “Effects of physical-chemical properties of soils on 60Co and 65Zn bioavailability,” J. Soils Sediments 15 (11), 2232–2243 (2015). doi 10.1007/s11368-015-1153-zCrossRefGoogle Scholar
  37. 37.
    A. J. M. Baker, “Accumulators and excluders—strategies in the response of plants to heavy metals,” J. Plant Nutr. 3, 643–654 (1981). doi 10.1080/01904168109362867CrossRefGoogle Scholar
  38. 38.
    S. A. Barber, Soil Nutrient Bioavailability: A Mechanistic Approach (Wiley, New York, 1995), 2nd ed.Google Scholar
  39. 39.
    B. C. F. Barbosa, S. C. Silva, R. R. de Oliveira, et al., “Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants,” Plant Soil 411 (1–2), 179–191 (2017). doi 10.1007/ s11104-016-2983-1CrossRefGoogle Scholar
  40. 40.
    P. Beckett, “Potassium-calcium exchange equilibria in soils: specific adsorption sites for potassium,” Soil Sci. 97 (6), 376–383 (1964).CrossRefGoogle Scholar
  41. 41.
    P. H. T. Beckett and M. H. M. Nafady, “Potassium–calcium exchange equilibria in soils: the location of non-specific (Gapon) and specific exchange sites,” J. Soil Sci. 18 (2), 263–281 (1967).CrossRefGoogle Scholar
  42. 42.
    P. H. T. Beckett, “Studies on soil potassium II. The ‘immediate’ Q/I relations of labile potassium in the soil,” J. Soil Sci. 15 (1), 9–23 (1964).CrossRefGoogle Scholar
  43. 43.
    C. Caldelas and D. J. Weiss, “Zinc homeostasis and isotopic fractionation in plants: a review,” Plant Soil 411 (1–2), 17–46 (2017). doi 10.1007/s11104-016-3146-0CrossRefGoogle Scholar
  44. 44.
    C. Cosio, E. Martinoia, and C. Keller, “Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level,” Plant Physiol. 134, 716–725 (2004). https://doi.org/10.1104/ pp.103.031948.CrossRefGoogle Scholar
  45. 45.
    H. D. Foth, Fundamentals of Soil Science (Wiley, New York, 1990).Google Scholar
  46. 46.
    G. Hacisalihoglu and L. V. Kochian, “How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants,” New Phytol. 159, 341–350 (2003). doi 10.1046/j.1469-8137.2003.00826.xCrossRefGoogle Scholar
  47. 47.
    G. Hacisalihoglu, J. J. Hart, and L. V. Kochian, “Highand low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat,” Plant Physiol. 125 (1), 456–463 (2001). https://doi.org/ 10.1104/pp.125.1.456.CrossRefGoogle Scholar
  48. 48.
    J. J. Hart, W. A. Norvell, R. M. Welch, L. A. Sullivan, and L. V. Kochian, “Characterization of zinc uptake, binding, and translocation of bread and durum wheat cultivars,” Plant Physiol. 118 (1), 219–226 (1998). https://doi.org/10.1104/pp.118.1.219CrossRefGoogle Scholar
  49. 49.
    D. L. Jones and P. R. Darrah, “Role of root derived organic acids in the mobilization of nutrients from the rhizosphere,” Plant Soil 166, 247–257 (1994). doi 10.1007/BF00008338CrossRefGoogle Scholar
  50. 50.
    D. L. Jones, A. C. Edwards, K. Donachiei, and P. R. Darrah, “Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere,” Plant Soil 158, 183–192 (1994). doi 10.1007/BF00009493CrossRefGoogle Scholar
  51. 51.
    A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, London, 2011).Google Scholar
  52. 52.
    Y. F. Lin and M. G. M. Aarts, “The molecular mechanism of zinc and cadmium stress response in plants,” Cell. Mol. Life Sci. 69 (19), 3187–3206 (2012). doi 10.1007/s00018-012-1089-zCrossRefGoogle Scholar
  53. 53.
    X. Liu, J. Chen, G. H. Wang, et al., “Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L.,” Plant Soil 400 (1–2), 177–192 (2016). doi 10.1007/s11104-015-2719-7CrossRefGoogle Scholar
  54. 54.
    N. S. Pence, P. B. Larsen, S. D. Ebbs, D. L. D. Letham, M. M. Lasat, D. F. Garvin, D. Eide, and L. V. Kochian, “The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens,” Proc. Natl. Acad. Sci. U.S.A. 97 (9), 4956–4960 (2000). doi 10.1073/pnas.97.9.4956CrossRefGoogle Scholar
  55. 55.
    K. J. Reddy, L. Wang, and S. P. Gloss, “Solubility and mobility of copper, zinc and lead in acidic environments,” Plant Soil 171, 53–58 (1995). doi 10.1007/ BF00009564CrossRefGoogle Scholar
  56. 56.
    P. N. Sharma, C. Chatterjee, S. C. Agarwala, and C. P. Sharma, “Zinc deficiency and pollen fertility in maize (Zea mays),” Plant Soil 124, 221–225 (1990). doi 10.1007/BF00009263CrossRefGoogle Scholar
  57. 57.
    V. Subhashini, A. V. V. S. Swamy, and R. H. Krishna, “Pot experiment: to study the uptake of zinc by different plant species in artificially contaminated soil,” World J. Environ. Eng. 1 (2), 27–33 (2013). doi 10.12691/wjee-1-2-3Google Scholar
  58. 58.
    J. Tiong, G. K. McDonald, Y. Genc, et al., “HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply,” New Phytol. 201, 131–143 (2014). doi 10.1111/nph.12468CrossRefGoogle Scholar
  59. 59.
    M. Walter, E. Oburger, Y. Schindlegger, S. Hann, M. Puschenreiter, S. M. Kraemer, and W. D. C. Schenkeveld, “Retention of phytosiderophores by the soil solid phase—adsorption and desorption,” Plant Soil 404, 85–97 (2016). doi 10.1007/s11104-016-2800-xCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Anisimov
    • 1
  • L. N. Anisimova
    • 1
  • L. M. Frigidova
    • 1
  • D. V. Dikarev
    • 1
  • R. A. Frigidov
    • 1
  • Yu. N. Korneev
    • 1
  • A. I. Sanzharov
    • 1
  • S. P. Arysheva
    • 1
  1. 1.Russian Institute of Agricultural Radiology and AgroecologyObninskRussia

Personalised recommendations