Eurasian Soil Science

, Volume 50, Issue 4, pp 396–411 | Cite as

Evaluation of organic carbon stocks and СО2 fluxes in grasslands of Western Transbaikalia

  • I. N. Lavrentyeva
  • M. G. Merkusheva
  • L. L. Ubugunov
Soil Chemistry


The stocks of organic carbon and mean rates of the CO2 emission during the growing season (May–September) and the entire year were estimated in a sequence of grass ecosystems along the transect encompassing chestnut and meadow-chestnut steppe soils, marsh and meadow alluvial soils, and a haloxerophytic community on a typical solonchak. The total stocks of organic carbon comprised 6.17–9.70 kg С/m2 in steppe, 7.41–10.04 kg С/m2 in floodplain, and 4.74 kg С/m2 in haloxerophytic ecosystems. The portion of humus carbon in the upper 50-cm-thick soil layer comprised 79–92% of the total carbon stock. The mean daily CO2 emission (С–CO2/(m2 day)) from alluvial soils was moderate (3.3–4.9) or low (1.5–2.5). The dependence of the CO2 emission on the moistening of steppe soils, temperature of alluvial soils, and temperature and moistening of solonchak was revealed. In comparison with the CO2 emission from the zonal chestnut soil, its mean values during the growing season and the entire year were 1.2 times higher for the meadowchestnut soil, 3.3 times higher for the marsh alluvial soil, 2.3 times higher for the meadow alluvial soil, and 1.7 times higher for the solonchak. The portion of the CO2 emission beyond the growing season in the mean annual emission averaged 19.8–24.2% and depended on the type of grass ecosystem and on weather conditions of particular years. The sink of carbon in the grass ecosystems exceeded carbon emission, especially in the steppe ecosystems.


grass ecosystem chestnut soil Kastanozems meadow-chestnut soil Gleyic Kastanozem (Chromic) marsh alluvial soil Gleyic Histic Fluvisol alluvial meadow soil Calcaric Fluvisols (Oxyaquic) typical solonchak Sodic Solonchak (Loamic Sulfatic) organic carbon stocks CO2 emission CO2 budget 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrophysical Methods of Soil Studies (Nauka, Moscow, 1966) [in Russian].Google Scholar
  2. 2.
    Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    N. A. Bazilevich, Biological Productivity of the Ecosystems of Northern Eurasia (Nauka, Moscow, 1993) [in Russian].Google Scholar
  4. 4.
    S. A. Blagodatskii, E. V. Blagodatskaya, A. Yu. Gorbenko, and N. S. Panikov, “Use of re-hydration for analysis of microbial biomass in soil,” Pochvovedenie, No. 4, 64–71 (1987).Google Scholar
  5. 5.
    V. B. Dambaev, G. G. Gonchikov, and B. B. Namsaraev, “Distribution of saprotrophic microorganisms in sor solonchaks of the Transbaikal region,” Eurasian Soil Sci. 37, 1205–1218 (2004).Google Scholar
  6. 6.
    G. V. Dobrovol’skii, I. P. Bab’eva, L. G. Bogatyrev, A. S. Vladychenksii, V. G. Vasil’evskaya, V. G. Vityazev, Yu. V. Gorelova, V. V. Demin, E. A. Dmitriev, N. G. Dobrovol’skaya, T. G. Dobrovol’skaya, F. R. Zidel’man, D. G. Zvyagintsev, G. M. Zenova, L. S. Il’ina et al., Structural and Functional Role of Soils and Soil Biota in the Biosphere (Nauka, Moscow, 2003) [in Russian].Google Scholar
  7. 7.
    G. V. Dobrovolskii and E. D. Nikitin, Soil Functions in the Biosphere and Ecosystems (Nauka, Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method,” Eurasian Soil Sci. 43, 321–327 (2010).CrossRefGoogle Scholar
  9. 9.
    G. A. Zavarzin, D. G. Zvyagintsev, L. O. Karpachevskii, and B. G. Rozanov, “Interaction of soil and atmosphere,” in Interaction of Soil and Atmospheric Air (Moscow State Univ., Moscow, 198), pp. 35–47.Google Scholar
  10. 10.
    G. A. Zavarzin and V. N. Kudeyarov, “Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia,” Herald Russ. Acad. Sci. 76, 12–26 (2006).CrossRefGoogle Scholar
  11. 11.
    D. G. Zvyagintsev, “Biological activity of soils and a scale for assessing its parameters,” Pochvovedenie, No. 6, 48–54 (1978).Google Scholar
  12. 12.
    V. N. Kudeyarov, “The contribution of Russian soils to the global biogeochemical carbon cycle,” in Soil Processes and Spatio-Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 345–359.Google Scholar
  13. 13.
    V. N. Kudeyarov, “The role of soils in the carbon cycle,” Eurasian Soil Sci. 38, 808–815 (2005).Google Scholar
  14. 14.
    V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Pools and Fluxes of Carbon in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    V. N. Kudeyarov and I. N. Kurganova, “Respiration of Russian soils: database analysis, long-term monitoring, and general estimates,” Eurasian Soil Sci. 38, 983–992 (2005).Google Scholar
  16. 16.
    Ya. V. Kuzyakov and A. A. Larionova, “Contribution of rhizomicrobial and root respiration to the CO2 emission from soil (a review),” Eurasian Soil Sci. 39, 753–764 (2006).CrossRefGoogle Scholar
  17. 17.
    I. N. Kurganova and P. Tipe, “The effect of freezingthawing processes on soil respiration activity,” Eurasian Soil Sci. 36, 976–985 (2003).Google Scholar
  18. 18.
    K. A. Kurkin, “Structural-functional analysis of the root mass of meadow phytocenoses,” Bot. Zh. 762 (6), 833–844 (1987).Google Scholar
  19. 19.
    Ch. S. Kyrgys, Candidate’s Dissertation in Biology (Tomsk, 2004).Google Scholar
  20. 20.
    A. A. Larionova, I. V. Yevdokimov, I. N. Kurganova, D. V. Sapronov, L. G. Kuznetsova, and V. O. Lopes de Gerenyu, “Root respiration and its contribution to the CO2 emission from soil,” Eurasian Soil Sci. 36, 173–184 (2003).Google Scholar
  21. 21.
    A. A. Larionova, D. V. Sapronov, V. O. Lopez de Gerenyu, L. G. Kuznetsova, and V. N. Kudeyarov, “Contribution of plant root respiration to the CO2 emission from soil,” Eurasian Soil Sci. 39, 1127–1135 (2006).CrossRefGoogle Scholar
  22. 22.
    E. V. Malkhanova, Candidate’s Dissertation in Biology (Ulan-Ude, 2007).Google Scholar
  23. 23.
    M. G. Merkusheva, L. L. Ubugunov, and S. R. Garmaev, Biological Cycle of Macro-and Microelements in the Floodplain Cenoses of Transbaikal Region (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2003) [in Russian].Google Scholar
  24. 24.
    M. G. Merkusheva, L. L. Ubugunov, G. D. Chimitdorzhieva, N. E. Abasheeva, V. I. Ubugunova, I. N. Lavrent’eva, and Ts.D.-Ts. Korsunova, Soil Organic Matter of Transbaikalian Region (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2008) [in Russian].Google Scholar
  25. 25.
    M. G. Merkusheva, V. I. Ubugunova, L. L. Ubugunov, and D. Bayasgalan, “Reserves, composition, and distribution of above-and underground phytomass in floodplain phytocenoses of the lower reaches of the Orkhon River (Mongolia),” Rastit. Resur., No. 1, 120–131 (1998).Google Scholar
  26. 26.
    E. Yu. Mil’kheev and G. D. Chimitdorzhieva, “Seasonal emission of carbon dioxide by soils in the Selenga River delta (Western Transbaikal region),” Agrokhimiya, No. 2, 46–52 (2015).Google Scholar
  27. 27.
    A. T. Mokronosov, “Global photosynthesis and biological diversity of vegetation,” in Carbon Cycle in Russia (Russian Federation Ministry of Education, Moscow, 1999), pp. 19–62.Google Scholar
  28. 28.
    A. V. Naumov, N. P. Kosykh, N. P. Mironycheva-Tokareva, and E. K. Parshina, “Carbon balance in the wetland ecosystems of Western Siberia,” Sib. Ekol. Zh., No. 5, 771–779 (2007).Google Scholar
  29. 29.
    Z. I. Nikitina, Microbiological Monitoring of Terrestrial Ecosystems (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  30. 30.
    V. G. Onipchenko, Functional Phytocenology: Synecology of the Plant (Krasand, Moscow, 2014) [in Russian].Google Scholar
  31. 31.
    D. S. Orlov and O. N. Biryukova, “Organic carbon reserves in soils of Russian Federation,” Pochvovedenie, No. 1, 21–32 (1995).Google Scholar
  32. 32.
    D. S. Orlov and O. N. Biryukova, “The stability of soil organic compounds and the emission of greenhouse gases into the atmosphere,” Eurasian Soil Sci. 31, 711–720 (1998).Google Scholar
  33. 33.
    L. M. Polyanskaya, V. V. Geidebrekht, A. L. Stepanov, and D. G. Zvyagintsev, “Distribution of microbial population and biomass within the zonal soil profiles,” Pochvovedenie, No. 3, 322–328 (1995).Google Scholar
  34. 34.
    E. A. Romankevich, “Living matter of the Earth: biogeochemical aspects,” Geokhimiya, No. 2, 292–306 (1988).Google Scholar
  35. 35.
    V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, A. S. Tulina, and V. N. Kudeyarov, “Kinetic analysis of the decomposition and mineralization of plant residues in gray forest soil,” Eurasian Soil Sci. 34, 503–511 (2001).Google Scholar
  36. 36.
    V. M. Semenov, L. A. Ivannikova, and T. V. Kuznetsova, “Structural and functional status of soil organic matter,” in Soil Processes and Spatio-Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 230–247.Google Scholar
  37. 37.
    A. V. Smagin, “The gas function of soils,” Eurasian Soil Sci. 33, 1061–1071 (2000).Google Scholar
  38. 38.
    R. L. Tate, Soil Organic Matter: Biological and Ecological Effects (Wiley, New York, 1987).Google Scholar
  39. 39.
    A. A. Titlyanova, S. Ya. Kudryashova, M. V. Yakutin, G. I. Bulavko, and N. P. Mironycheva-Tokareva, “The reserves of carbon in vegetative and microbial biomass of Siberian ecosystems,” Eurasian Soil Sci. 34, 837–849 (2001).Google Scholar
  40. 40.
    A. A. Tishkov, “Productivity and carbon balance in natural ecosystems of Russia,” Ispol’z. Okhrana Prirod. Resur. Ross., No. 2, 84–98 (2006).Google Scholar
  41. 41.
    L. L. Ubugunov, I. N. Lavrent’eva, and M. G. Merkusheva, “The biological productivity and humus status of soils in the Ivolga valley (Western Transbaikal region),” Eurasian Soil Sci. 34, 492–502 (2001).Google Scholar
  42. 42.
    V. I. Ubugunova, I. N. Lavrent’eva, L. L. Ubugunov, and T. P. Nikheleeva, “Mesofauna in soils of the Ivolga depression (Western Transbaikal region),” Eurasian Soil Sci. 40, 866–874 (2007).CrossRefGoogle Scholar
  43. 43.
    G. D. Chimitdorzhieva, R. A. Egorova, E. Yu. Mil’kheev, and Yu. B. Tsybenov, “Carbon flows in steppe ecosystems of Southern Transbaikalian region,” Rastit. Mir Aziat. Ross., No. 2 (6), 33–39 (2010).Google Scholar
  44. 44.
    E. O. Chimitdorzhieva, Candidate’s Dissertation in Biology (Ulan-Ude, 2011).Google Scholar
  45. 45.
    M. S. Shalyt, “Analysis of morphology and ecology of underground part of some plants and plant communities,” in Field Geobotany (Nauka, Moscow, 1960), Vol. 2, pp. 369–447.Google Scholar
  46. 46.
    I. N. Sharkov, “Improvement of absorption method of CO2 emission from soils in the field conditions,” Pochvovedenie, No. 1, 127–133 (1987).Google Scholar
  47. 47.
    M. Bahn, M. Knapp, Z. Garajova, N. Pfahringer, and A. Cernusca, “Root respiration in temperate mountain grasslands differing in land use,” Global Change Biol. 12, 995–1006 (2006).CrossRefGoogle Scholar
  48. 48.
    R. D. Boone, K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye, “Roots exert a strong influence on the temperature sensitivity of soil respiration,” Nature 396, 570–572 (1998).CrossRefGoogle Scholar
  49. 49.
    H. J. M. Bowen, Trace Elements in Biochemistry (Academic, London, 1966).Google Scholar
  50. 50.
    K. E. Clemmensen, A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, et al., “Roots and associated fungi drive long-term carbon sequestration in boreal forest,” Science 339, 1615–1618 (2013). doi 10.1126/science.1231923CrossRefGoogle Scholar
  51. 51.
    H. P. Collins, E. T. Elliott, K. Paustian, L. G. Bundy, W. A. Dick, D. R. Huggins, A. J. M. Smucker, and E. A. Paul, “Soil carbon pools and fluxes in long-term corn belt agroecosystems,” Soil Biol. Biochem. 32, 157–168 (2000).CrossRefGoogle Scholar
  52. 52.
    J. M. Craine, D. M. Berin, P. B. Reich, D. G. Tilman, and J. M. H. Knops, “Measurement of leaf longevity of 14 species of grasses and forbs using a novel approach,” New Phytol. 142(3), 475–481 (1999).CrossRefGoogle Scholar
  53. 53.
    A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. van der Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E. D. Schulze, “An estimate of the terrestrial carbon budget of Russia using inventorybased, eddy covariance and inversion methods,” Biogeosciences 9 (12), 5323–5340 (2012). doi 10.5194/ bg-9-5323-2012CrossRefGoogle Scholar
  54. 54.
    A. Ekblad and P. Hogberg, “Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration,” Oecologia 127, 305–308 (2001).CrossRefGoogle Scholar
  55. 55.
    J. J. Elser, M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, and J. B. Shurin, “Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems,” Ecol. Lett. 10 (12), 1135–1142 (2007).CrossRefGoogle Scholar
  56. 56.
    P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contributions to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).CrossRefGoogle Scholar
  57. 57.
    P. Högberg, A. Nordgren, N. Buchmann, A. F. Taylor, A. Ekblad, M. N. Högberg et al., “Large-scale forest girdling shows that current photosynthesis drives soil respiration,” Nature 411, 789–792 (2001). doi 10.1038/35081058CrossRefGoogle Scholar
  58. 58.
    P. Högberg and D. J. Read, “Towards a more plant physiological perspective on soil ecology,” Trends Ecol. Evol. 21 (10), 548–554 (2006). doi 10.1016/j.tree.2006.06.004CrossRefGoogle Scholar
  59. 59.
    R. A. Houghton and D. L. Skole, Carbon. The Earth as Transformed by Human Action (Cambridge University Press, Cambridge, 1990), pp. 393–412.Google Scholar
  60. 60.
    C. Körner, “Alpine plants: stressed or adapted?” in Physiological Plant Ecology, Ed. by M. C. Press, J. D. Scholes, and M. G. Barker (Blackwell, Oxford, 1999), pp. 297–311.Google Scholar
  61. 61.
    Y. Kuzyakov and G. Domanski, “Carbon input by plants into the soil. Review,” J. Plant Nutr. Soil Sci. 163, 421–431 (2000). doi 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RCrossRefGoogle Scholar
  62. 62.
    Y. Kuzyakov, J. K. Friedel, and K. Stahr, “Review of mechanisms and quantification of priming effects,” Soil Biol. Biochem. 32, 1485–1498 (2000). doi 10.1016/S0038-0717(00)00084-5CrossRefGoogle Scholar
  63. 63.
    C. M. Litton, J. W. Raich, and M. G. Ryan, “Carbon allocation in forest ecosystems,” Global Change Biol. 13, 2089–2109 (2007). doi 10.1111/j.1365-2486.2007.01420.xCrossRefGoogle Scholar
  64. 64.
    J. A. E. Molina, C. J. Crocker, P. R. Grace, J. Klir, M. Körschens, P. R. Poulton, and D. D. Richter, “Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models,” Geoderma 81, 91–107 (1997). doi 10.2489/ jswc.68.4.296CrossRefGoogle Scholar
  65. 65.
    T. Mueller, J. Magid, L. S. Jensen, H. Svendsen, and N. E. Nielsen, “Soil C and N turnover after incorporation of chopped maize, barley straw and blue grass in the field: evaluation of the DAISY soil-organic-matter submodel,” Ecol. Model. 111, 1–15 (1998). doi 10.1016/S0304-3800(98)00094-5CrossRefGoogle Scholar
  66. 66.
    B. Nicolardot, J. A. E. Molina, and M. R. Allard, “C and N fluxes between pools of soil organic matter: model calibration with long-term incubation data,” Soil Biol. Biochem. 26, 235–243 (1994).CrossRefGoogle Scholar
  67. 67.
    W. H. Schlesinger and J. A. Andrews, “Soil respiration and global carbon cycle,” Biogeochemistry 48, 7–20 (2000). doi 10.1023/A:1006247623877CrossRefGoogle Scholar
  68. 68.
    M. C. Scholes, D. Powlson, and G. Tian, “Input control of organic matter dynamics,” Geoderma 79, 25–27 (1997). doi 10.1016/S0016-7061(97)00037-2CrossRefGoogle Scholar
  69. 69.
    E. Schulze, “Wirkungen der organischen Substanz und ihre Beziehungen zur Fruchtfolge,” Wiss. Ber. Landw. Fak. Univ. Bonn, 87–97 (1974).Google Scholar
  70. 70.
    I. Trinsoutrot, S. Recous, B. Bentz, M. Lineres, D. Cheneby, and B. Nicolardot, “Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under non limiting nitrogen conditions,” Soil Sci. Soc. Am. J. 64, 918–926 (2000). doi 10.2136/sssaj2000.643918xCrossRefGoogle Scholar
  71. 71.
    M. Von Lutzow, J. Leifeld, M. Kainz, I. Kogel-Knabner, and J. C. Munch, “Indications for soil organic matter quality in soils under different management,” Geoderma 105, 243–258 (2002). doi 10.1016/S0016-7061(01)00106-9CrossRefGoogle Scholar
  72. 72.
    S. Wan and Y. Luo, “Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment,” Global Biogeochem. Cycles 17, 1054 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. N. Lavrentyeva
    • 1
    • 2
  • M. G. Merkusheva
    • 1
  • L. L. Ubugunov
    • 1
    • 2
  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia
  2. 2.Buryat State Agricultural AcademyUlan-UdeRussia

Personalised recommendations