Eurasian Soil Science

, Volume 50, Issue 4, pp 438–444 | Cite as

Dynamics of denitrification and ammonification activities in the abandoned and intensely cultivated gray forest soils (Tula oblast)

  • N. R. Emer
  • N. V. Kostina
  • M. V. Golichenkov
  • A. I. Netrusov
Soil Chemistry
  • 30 Downloads

Abstract

The results of experimental study of daily dynamics of denitrification activity and the activity and population density of ammonifiers in the abandoned (converted to long-term fallow) and intensely cultivated gray forest soils (Luvic Retic Greyzemic Phaeozems (Aric)) are discussed. The potential denitrification activity in the arable soil is higher than that in the fallow soil, whereas the actual denitrification activity in the arable soil is lower. Data on the dynamics of ammonification do not show reliable differences between the activities of ammonifiers in the arable and fallow soils, though the number of ammonifying bacteria is considerably higher in the arable soil. Differences in daily dynamics of the numbers of ammonifiers in the fallow and arable soils are shown.

Keywords

soil microorganisms anthropogenic impact succession denitrification ammonification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Belyaev, Physical and Chemical Analysis of Soils. Methodological Recommendations for Determination of Nutrients: Nitrogen, Phosphorous, and Potassium (Voronezh, 2000) [in Russian].Google Scholar
  2. 2.
    T. A. Valueva, T. A. Revina, E. L. Gvozdeva, N. G. Gerasimova, and O. L. Ozeretskovskaya, “Role of protease inhibitors in potato protection,” Russ. J. Bioorg. Chem. 29, 454–458 (2003).CrossRefGoogle Scholar
  3. 3.
    N. I. Gantimurova, Denitrification in Soils of Western Siberia (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  4. 4.
    Dynamics of Natural Populations in the Open Systems, Pechurkin N. S., Ed., (Krasnoyarsk, 1975) [in Russian].Google Scholar
  5. 5.
    N. B. Zinyakova, Candidate’s Dissertation in Biology (Pushchino, 2014).Google Scholar
  6. 6.
    N. B. Zinyakova, A. K. Khodzhaeva, A. S. Tulina, and V. M. Semenov, “Active organic matter in gray forest soil of arable and fallow lands,” Agrokhimiya, No. 9, 3–14 (2013).Google Scholar
  7. 7.
    R. I. Ibragimov, A. A. Yamaleeva, R. F. Talipov, A. A. Kulagin, and S. M. Yamalov, “Physical and biochemical mechanisms of the effect of ecologically safe reagents of plant production,” Usp. Sovrem. Estestvozn., No. 10, 38–39 (2003).Google Scholar
  8. 8.
    G. F. Lakin, Biometry (Vysshaya Shkola, Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].Google Scholar
  10. 10.
    E. V. Moshkina, Candidate’s Dissertation in Agriculture (St. Petersburg, 2009).Google Scholar
  11. 11.
    Practical Manual on Microbiology, Ed. by A. I. Netrusov (Akademiya, Moscow, 2005) [in Russian].Google Scholar
  12. 12.
    G. F. Sadykov, Biological Nitrogen Fixation in Agrocenoses (Bashkir Scientific Center, Ural Branch, Academy of Sciences of Soviet Union, Ufa, 1989) [in Russian].Google Scholar
  13. 13.
    A. L. Stepanov and L. V. Lysak, Application of Gas Chromatography in Soil Microbiology: Manual (MAKS Press, Moscow, 2002) [in Russian].Google Scholar
  14. 14.
    M. M. Umarov, A. V. Kurakov, and A. L. Stepanov, Microbiological Transformation of Nitrogen in Soil (GEOS, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    T. A. Shokhova, Candidate’s Dissertation in Agriculture (Bryansk, 2011).Google Scholar
  16. 16.
    N. R. Emer, A. M. Semenov, V. V. Zelenev, N. B. Zinyakova, N. V. Kostina, and M. V. Golichenkov, “Daily dynamics of the number and activity of nitrogen-fixing bacteria in fallow and intensely cultivated soils,” Eurasian Soil Sci. 47, 801–808 (2014). doi 10.1134/ S106422931408002XCrossRefGoogle Scholar
  17. 17.
    V. Acoste-Martinez, G. Burow, T. M. Zobeck, and V. G. Allen, “Soil microbial communities and function in alternative systems to continuous cotton,” Soil Sci. Soc. Am. J. 74 (4), 1181–1192 (2010). doi 10.2136/ sssaj2008.0065CrossRefGoogle Scholar
  18. 18.
    A. Bannert, K. Kleineidam, L. Wissing, C. Mueller-Niggemann, V. Vogelsang, G. Welzl, Z. Cao, and M. Schloter, “Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods,” Appl. Environ. Microbiol. 77 (17), 6109–6116 (2011). doi 10.1128/AEM.01751–10CrossRefGoogle Scholar
  19. 19.
    E. Barrious, “Soil biota, ecosystem services and land productivity,” Ecol. Econ. 64, 269–285 (2007). doi 10.1016/j.ecolecon.2007.03.004CrossRefGoogle Scholar
  20. 20.
    S. Botton, M. van Heusden, J. R. Parsons, H. Smidt, and N. van Straalen, “Resilience of microbial systems towards disturbances,” Crit. Rev. Microbiol. 32, 101–112 (2006). doi 10.1080/10408410600709933CrossRefGoogle Scholar
  21. 21.
    D. Cheneby, D. Bru, N. Pascault, P. A. Maron, L. Ranjard, and L. Philippot, “Role of plant residues in determining temporal patterns of the activity, size, and structure of nitrate reducer communities in soil,” Appl. Environ. Microbiol. 76 (21), 7136–7143 (2010). doi 10.1128/AEM.01497-10CrossRefGoogle Scholar
  22. 22.
    B. S. Griffiths and L. Philippot, “Insights into the resistance and resilience of the soil microbial community,” FEMS Microbiol. Rev. 37, 112–129 (2013). doi 10.1111/j.1574-6976.2012.00343.xCrossRefGoogle Scholar
  23. 23.
    G. Hofman and O. V. Cleemput, Soil and Plant Nitrogen (Paris, IFA, 2004).Google Scholar
  24. 24.
    J. W. Leff, S. E. Jones, S. M. Prober, A. Barberan, et al., “Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe,” Proc. Natl. Acad. Sci. U.S.A. 112 (35), 10967–10972 (2015). doi 10.1073/pnas.1508382112CrossRefGoogle Scholar
  25. 25.
    X. Liu, J. Zhang, T. Gu, W. Zhang, Q. Shen, and S. Yin, “Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequensing approach,” PLoS One 9 (1), 1–10 (2014). doi 10.1371/journal.pone.0086610Google Scholar
  26. 26.
    A. Monkiedje, M. Spitelle, D. Fotio, and P. Sukul, “The effect on land use on soil health indicators in periurban agriculture in the humid forest zone of southern Cameroon,” J. Environ. Qual. 35, 2402–2409 (2006). doi 10.2134/jeq2005.0447CrossRefGoogle Scholar
  27. 27.
    M. C. Moscatelli, A. Di Tizio, S. Marinari, and S. Grego, “Microbial indicators related to soil carbon in Mediterranean land use systems,” Soil Tillage Res. 97, 51–59 (2007). doi 10.1016/j.still.2007.08.007CrossRefGoogle Scholar
  28. 28.
    D. D. Myrold, “Soil nitrogen cycle,” in Encyclopedia of Environmental Microbiology, Ed. by G. Bitton (Wiley, New York, 2002), pp. 2936–2944.Google Scholar
  29. 29.
    E. P. Odum, “The strategy of ecosystem development,” Science 164, 262–270 (1969). doi 10.1126/science. 164.3877.262CrossRefGoogle Scholar
  30. 30.
    A. L. Peralta, J. W. Matthews, and A. D. Kent, “Microbial community structure and denitrification in a wetland mitigation bank,” Appl. Environ. Microbiol. 76 (13), 4207–4215 (2010). doi 10.1128/AEM.12977-09CrossRefGoogle Scholar
  31. 31.
    H. Y. Sun, S. P. Deng, and W. R. Raun, “Bacterial community structure and diversity in a century-old manure-treated agroecosystem,” Appl. Environ. Microbiol. 70 (10), 5868–5874 (2004). doi 10.1128/ AEM.70.10.5868-5874.2004CrossRefGoogle Scholar
  32. 32.
    M. J. Swift, J. Vandermeer, P. S. Ramakrishnan, J. M. Anderson, and C. K. Ong, “Biodiversity and agroecosystem function,” in Functional Role of Biodiversity: A Global Perspective, Ed. by H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala, and E.-D. Schulze (Wiley, New York, 1996), pp. 261–298.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. R. Emer
    • 1
  • N. V. Kostina
    • 1
  • M. V. Golichenkov
    • 1
  • A. I. Netrusov
    • 1
  1. 1.Lomonosov Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations