Interferogram Control in a Meta-Interferometer with a Metastructure of Linear Wires as a Reflector of a Fabry–Perot Cavity

Abstract

A method for selective control of multiband filtering of microwaves in the 3–6 GHz range has been proposed and tested. It is based on the use of a metastructure as one of the reflectors of a Fabry–Perot cavity of a modified h-plane waveguide-tee interferometer. The metastructure consists of an array of linear resonant wires in combination with an orthogonally and asymmetrically located copper strip with a break, loaded with a control element (varactor or fixed capacitance). The possibility of selective frequency and depth control of the interference stop-band in a three-band Fabry–Perot cavity and a modified seven-band tee interferometer has been discovered. The retuning of the cavity and interferometer bands is shown to be associated with the influence of resonance in a metastructure and occurs when the resonance frequency in the metastructure approaches the corresponding interference fringe.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. 1

    R. Cameron, C. Kudsia, and R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications (Wiley, Moscow, 2018).

    Google Scholar 

  2. 2

    V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, Appl. Phys. A 123 (1), 57 (2017).

    Article  Google Scholar 

  3. 3

    . A. Kraftmakher, V. S. Butylkin, and Yu. N. Kazantsev, Tech. Phys. Lett. 41, 723 (2015)

    Article  Google Scholar 

  4. 4

    S. E. Bankov, M. D. Duplenkova, and E. V. Frolova, J. Radioektrn., No. 7 (2013). http://jre.cplire.ru/ jre.jul13/9/text.pdf.

  5. 5

    J. V. Antonenko, A. V. Gribovsky, and I. K. Kuzmichev, Telecommun. & Radio Eng. 77, 1029 (2018).

    Article  Google Scholar 

  6. 6

    J. Krupka, A. Cwikla, M. Mrozowski, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1443 (2005).

    Article  Google Scholar 

  7. 7

    Z. G. Liu, W. X. Zhang, D. L. Fu, et al., Microwave Optical Technol. Lett. 50, 1623 (2008).

    Article  Google Scholar 

  8. 8

    M. S. Kumar and Y. K. Choukiker, IET Microwaves, Antennas & Propag. 12 (15), 2364 (2018).

    Google Scholar 

  9. 9

    Y. I. A. Al-Yasir and R. A. Abd-Alhameed, et al., Electronics 8 (1), 114 (2019).

    Article  Google Scholar 

  10. 10

    M. P. Fok and J. Ge, Photonics 4 (4), 45 (2017).

    Article  Google Scholar 

  11. 11

    I. A. Ustinova, A. A. Nikitin, A. V. Kondrashov, D. A. Popov, A. B. Ustinov, and E. Lahderanta, Tech. Phys. Lett. 42, 891 (2016).

    Article  Google Scholar 

  12. 12

    G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, JETP Lett. 109, 232 (2019).

    Article  Google Scholar 

  13. 13

    G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, J. Commun. Technol. Electron. 64, 1179 (2019).

    Article  Google Scholar 

  14. 14

    G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, J. Phys.: Conf. Ser. 1461, 012074 (2020).

    Google Scholar 

  15. 15

    G. Kraftmakher and V. Butylkin, Adv. Electromagn. 1 (2), 16 (2012).

    Article  Google Scholar 

  16. 16

    V. S. Butylkin and G. A. Kraftmakher, Tech. Phys. Lett. 37, 309 (2011).

    Article  Google Scholar 

  17. 17

    G. Kraftmakher, V. Butylkin, Y. Kazantsev, and V. Maltsev, Electron. Lett. 53 (18), 1264 (2017).

    Article  Google Scholar 

  18. 18

    G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, et al., J. Radioektrn., No. 6 (2020). http://jre.cplire.ru/jre/jun20/text.pdf.

  19. 19

    J. M. Stone, Radiation and Optics: An Introduction to the Classical Theory (McGraw-Hill, New York, 1963).

    Google Scholar 

  20. 20

    V. S. Butylkin and G. A. Kraftmakher, J. Commun. Technol. Electron. 53, 1 (2008).

    Article  Google Scholar 

  21. 21

    V. S. Butylkin, G. A. Kraftmakher, and V. P. Mal’tsev, J. Commun. Technol. Electron. 54, 1124 (2009).

    Article  Google Scholar 

  22. 22

    V. V. Shevchenko, J. Commun. Technol. Electron. 55, 986 (2010).

    Article  Google Scholar 

  23. 23

    V. V. Anenkov and V. V. Shevchenko, J. Commun. Technol. Electron. 56, 1186 (2011).

Download references

Funding

The study was supported a part of a state assignment of the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences on topic 0030-2019-0014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. A. Kraftmakher.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kraftmakher, G.A., Butylkin, V.S., Kazantsev, Y.N. et al. Interferogram Control in a Meta-Interferometer with a Metastructure of Linear Wires as a Reflector of a Fabry–Perot Cavity. J. Commun. Technol. Electron. 66, 1–13 (2021). https://doi.org/10.1134/S1064226921010058

Download citation