Influence of Geometric Parameters and Permittivity of Stripline Filters on Resonator Coupling Coefficients

Physical Processes in Electron Devices
  • 4 Downloads

Abstract

It has been proved that electromagnetic coupling coefficients K of resonators in stripline filters with homogeneous dielectric depend only on geometric parameters of the filter designs and are independent of relative permittivity εr (if the dielectric is two-layer, coefficients K depend only on geometric parameters of the filter designs and ratio εr2r1). It has been shown that the revealed earlier influence of permittivity εr and the operating frequency on K is only a consequence of the influence of the length of stripline resonators on K: the lesser is the length, the larger is coefficient K. It has been found that these propositions enable consideration of frequency characteristics of the same design of the bandpass filter in different frequency bands by changing εr and performing slight changes in outermost resonators. The results of computer simulation of the transfer of frequency characteristics of a stripline bandpass filter from 3 GHz to 6 and 12 GHz with retaining the fractional bandwidth and selectivity are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964; Svyaz’, Moscow, 1971)Google Scholar
  2. 2.
    M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication. Theory, Design and Application (Springer-Verlag, Berlin, 2001).Google Scholar
  3. 3.
    D. Morgan, Surface Acoustic Wave Filters: with Applications to Electronic Communications and Signal Processing (Academic, Amsterdam, 2010).Google Scholar
  4. 4.
    http://www.nxp.com.Google Scholar
  5. 5.
    A. Fukasawa, IEEE Trans. Microwave Theory Tech. 30, 1367 (1982).CrossRefGoogle Scholar
  6. 6.
    L. K. Yeung, K. L. Wu, and Y. E. Wang, IEEE Microwave Mag., No. 9, 118 (2008).CrossRefGoogle Scholar
  7. 7.
    T. Ishizaki, M. Fujita, H. Kagata, et al., IEEE Trans. Microwave Theory Tech. 42, 2017 (1994).CrossRefGoogle Scholar
  8. 8.
    http://www. murata.com.Google Scholar
  9. 9.
    http://www.rogerscorp.com.Google Scholar
  10. 10.
    J. T. Bolljahn and G. L. Matthael, Proc. IRE 50 (3), 229 (1962).CrossRefGoogle Scholar
  11. 11.
    L. N. Dworsky, “Stripline filters—An overview,” in Proc. 37th Ann. Frequency Control Symp. IEEE, July 1–3, 1983 (IEEE, New York, 1983), p. 387.Google Scholar
  12. 12.
    J.-S. Hong, Microstrip Filters for RF/Microwave Application, 2nd Ed. (Wiley, New York, 2011).CrossRefGoogle Scholar
  13. 13.
    A. V. Zakharov and M. E. Il’chenko, J. Commun. Technol. Electron. 60, 801 (2015).CrossRefGoogle Scholar
  14. 14.
    A. V. Zakharov, M. E. Il’chenko, and L. S. Pinchuk, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 58 (6), 52 (2015).Google Scholar
  15. 15.
    A. V. Zakharov, J. Commun. Technol. Electron. 58, 300 (2013).Google Scholar
  16. 16.
    A. V. Zakharov, M. E. Il’chenko, and V. N. Korpach, J. Commun. Technol. Electron. 59, 550 (2014).CrossRefGoogle Scholar
  17. 17.
    A. V. Zakharov, M. E. Il’chenko, and L. S. Pinchuk, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 57 (5), 35 (2014).Google Scholar
  18. 18.
    G. Megla, Dezimeterwellentechnik. Theorie und Technik der Dezimeterschaltungen (Fachbuchverlag, Leipzig, 1952; Sovetskoe Radio, Moscow, 1958).Google Scholar
  19. 19.
    A. V. Zakharov, M. E. Il’chenko, V. Ya. Karnaukh, and L. S. Pinchuk, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 54 (3), 56 (2011).Google Scholar
  20. 20.
    G. M. Aristarkhov and Yu. P. Vershinin, Elektron. Tekh., Ser. Mikroelektron. Ustr., No. 1, 21 (1983).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Igor Sikorsky Kyiv Polytechnic Institute (National Technical University of Ukraine)KyivUkraine

Personalised recommendations