Skip to main content
Log in

Impact of the Graded-Gap Layer on the Admittance of MIS Structures Based on MBE-Grown n-Hg1 – xCd x Te (x = 0.22–0.23) with the Al2O3 Insulator

  • Articles from the Russian Journal Prikladnaya Fizika
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The impact of the presence of the near-surface graded-gap layers with an increased content of CdTe on the admittance of MIS structures based on MBE-grown n-Hg1–xCdxTe (x = 0.22–0.23) with the Al2O3 insulating coating has been experimentally studied. It has been shown that the structures with a gradedgap layer are characterized by a deeper and wider capacitance dip in the low-frequency capacitance–voltage (CV) characteristic and by higher values of the differential resistance of the space-charge region than the structures without such a layer. It has been found that the main features of the hysteresis of capacitance dependences typical of the graded-gap structures with SiO2/Si3N4 are also characteristic of the MIS structures with the Al2O3 insulator. The factors that cause an increase in the CV characteristic hysteresis upon formation of the graded-gap layer in structures with SiO2/Si3N4 or Al2O3 are still debatable, although it may be assumed that oxygen plays a certain role in formation of this hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors (CRC Press, Taylor & Francis Group, New York, 2011).

    Google Scholar 

  2. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011).

    Google Scholar 

  3. V. N. Ovsyuk, G. L. Kuryshev, and Yu. G. Sidorov, Focal Plane Arrays of Infrared Range (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  4. Yu. G. Sidorov, S. A. Dvoretski, V. S. Varavin, N. N. Mikhalov, M. V. Yakushev, and I. V. Sabinina, Semiconductors 35, 1045 (2001).

    Article  Google Scholar 

  5. O. P. Agnihorti, C. A. Musca, and L. Faraone, Semicond. Sci. Tech. 13, 839 (1998).

    Article  Google Scholar 

  6. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, New York, 2002).

    Google Scholar 

  7. A. V. Voitsekhovskii, S. N. Nesmelov, and A. P. Kokhanenko, Russian Phys. J. 48 (2), 143–147 (2005).

    Article  Google Scholar 

  8. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Russian Phys. J. 57, 536 (2014).

    Article  Google Scholar 

  9. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electronics Rev. 22 (4), 236 (2014).

    Article  Google Scholar 

  10. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol. 71, 236 (2015).

    Article  Google Scholar 

  11. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE 6636, 663617 (2007).

    Article  Google Scholar 

  12. V. V. Vasil’ev and Yu. P. Mashukov, Semiconductors 41 (1), 37 (2007).

    Article  Google Scholar 

  13. D. I. Gorn, S. N. Nesmelov, A. V. Voitsekhovskii, and A. P. Kokhanenko, Izv. Vyssh. Uchebn. Zaved., Fiz. 51 (9-3), 134 (2008).

    Google Scholar 

  14. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, and M. V. Yakushev, Opto-Electron. Rev. 18 (3), 263 (2010).

    Google Scholar 

  15. R. Fu and J. Pattison, Opt. Eng. 51, 104003-1 (2012).

  16. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J. 58, 540 (2015).

    Article  Google Scholar 

  17. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Electron. Mater. 45, 881 (2016).

    Article  Google Scholar 

  18. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J. 59, 284–294 (2016).

    Article  Google Scholar 

  19. W. He and Z. Celik-Butler, Solid-State Electron. 39 (1), 127 (1996).

    Article  Google Scholar 

  20. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Priklad. Fiz., No. 5, 80 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Original Russian Text © A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasil’ev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, G.Yu. Sidorov, 2016, published in Prikladnaya Fizika, 2016, No. 4, pp. 58–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Impact of the Graded-Gap Layer on the Admittance of MIS Structures Based on MBE-Grown n-Hg1 – xCd x Te (x = 0.22–0.23) with the Al2O3 Insulator. J. Commun. Technol. Electron. 63, 281–284 (2018). https://doi.org/10.1134/S106422691803021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691803021X

Keywords

Navigation