Advertisement

Impact of the Graded-Gap Layer on the Admittance of MIS Structures Based on MBE-Grown n-Hg1 – xCd x Te (x = 0.22–0.23) with the Al2O3 Insulator

  • A. V. Voitsekhovskii
  • S. N. Nesmelov
  • S. M. Dzyadukh
  • V. V. Vasil’ev
  • V. S. Varavin
  • S. A. Dvoretsky
  • N. N. Mikhailov
  • M. V. Yakushev
  • G. Yu. Sidorov
Articles from the Russian Journal Prikladnaya Fizika
  • 18 Downloads

Abstract

The impact of the presence of the near-surface graded-gap layers with an increased content of CdTe on the admittance of MIS structures based on MBE-grown n-Hg1–xCdxTe (x = 0.22–0.23) with the Al2O3 insulating coating has been experimentally studied. It has been shown that the structures with a gradedgap layer are characterized by a deeper and wider capacitance dip in the low-frequency capacitance–voltage (CV) characteristic and by higher values of the differential resistance of the space-charge region than the structures without such a layer. It has been found that the main features of the hysteresis of capacitance dependences typical of the graded-gap structures with SiO2/Si3N4 are also characteristic of the MIS structures with the Al2O3 insulator. The factors that cause an increase in the CV characteristic hysteresis upon formation of the graded-gap layer in structures with SiO2/Si3N4 or Al2O3 are still debatable, although it may be assumed that oxygen plays a certain role in formation of this hysteresis.

Keywords

MIS structure HgCdTe aluminum oxide graded-gap layer admittance capacitance–voltage characteristic hysteresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rogalski, Infrared Detectors (CRC Press, Taylor & Francis Group, New York, 2011).Google Scholar
  2. 2.
    P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011).Google Scholar
  3. 3.
    V. N. Ovsyuk, G. L. Kuryshev, and Yu. G. Sidorov, Focal Plane Arrays of Infrared Range (Nauka, Novosibirsk, 2001) [in Russian].Google Scholar
  4. 4.
    Yu. G. Sidorov, S. A. Dvoretski, V. S. Varavin, N. N. Mikhalov, M. V. Yakushev, and I. V. Sabinina, Semiconductors 35, 1045 (2001).CrossRefGoogle Scholar
  5. 5.
    O. P. Agnihorti, C. A. Musca, and L. Faraone, Semicond. Sci. Tech. 13, 839 (1998).CrossRefGoogle Scholar
  6. 6.
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, New York, 2002).Google Scholar
  7. 7.
    A. V. Voitsekhovskii, S. N. Nesmelov, and A. P. Kokhanenko, Russian Phys. J. 48 (2), 143–147 (2005).CrossRefGoogle Scholar
  8. 8.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Russian Phys. J. 57, 536 (2014).CrossRefGoogle Scholar
  9. 9.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electronics Rev. 22 (4), 236 (2014).CrossRefGoogle Scholar
  10. 10.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol. 71, 236 (2015).CrossRefGoogle Scholar
  11. 11.
    V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE 6636, 663617 (2007).CrossRefGoogle Scholar
  12. 12.
    V. V. Vasil’ev and Yu. P. Mashukov, Semiconductors 41 (1), 37 (2007).CrossRefGoogle Scholar
  13. 13.
    D. I. Gorn, S. N. Nesmelov, A. V. Voitsekhovskii, and A. P. Kokhanenko, Izv. Vyssh. Uchebn. Zaved., Fiz. 51 (9-3), 134 (2008).Google Scholar
  14. 14.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, and M. V. Yakushev, Opto-Electron. Rev. 18 (3), 263 (2010).Google Scholar
  15. 15.
    R. Fu and J. Pattison, Opt. Eng. 51, 104003-1 (2012).Google Scholar
  16. 16.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J. 58, 540 (2015).CrossRefGoogle Scholar
  17. 17.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Electron. Mater. 45, 881 (2016).CrossRefGoogle Scholar
  18. 18.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russian Phys. J. 59, 284–294 (2016).CrossRefGoogle Scholar
  19. 19.
    W. He and Z. Celik-Butler, Solid-State Electron. 39 (1), 127 (1996).CrossRefGoogle Scholar
  20. 20.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Priklad. Fiz., No. 5, 80 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Voitsekhovskii
    • 1
  • S. N. Nesmelov
    • 1
  • S. M. Dzyadukh
    • 1
  • V. V. Vasil’ev
    • 2
  • V. S. Varavin
    • 2
  • S. A. Dvoretsky
    • 1
    • 2
  • N. N. Mikhailov
    • 2
  • M. V. Yakushev
    • 2
  • G. Yu. Sidorov
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations