Analysis of Misorientation of Single-Crystal Blocks in the Bulk InSb Crystal

  • A. D. Shabrin
  • A. E. Goncharov
  • D. A. Pashkeev
  • A. V. Lyalikov
  • A. V. Egorov
Articles from the Russian Journal Prikladnaya Fizika
  • 3 Downloads

Abstract

A model for calculation of the angle of misorientation between the reflecting crystallographic planes and the plane of the semiconductor surface of a sample by means of high-resolution X-ray diffractometry has been developed. The model can minimize mechanical instrument errors, including the positioning and moving inaccuracies, and determine the optimum parameters of sample position with respect to the incident radiation for correct investigations of the perfection of the crystal structure. The principle of conduction of the experiment and the mathematical model used for processing of the obtained data are described. To find macrodefects of the crystal structure, in particular, blocks, the map of the distribution of parameters of the the rocking curve of the entire sample was obtained using the developed model. This allowed determination of the blocks boundaries and their mutual orientation in the directions longitudinal relative to the wafer. The model was tested on a wafer cut from a bulk indium antimonide single crystal grown by the Czochralski method and subjected to chemical-dynamic and chemical-mechanical polishing.

Keywords

X-ray diffractometry single crystal indium antimonide InSb blocks misorientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rogalski, Progress in Quant. Electron. 27 (2), 59 (2003).CrossRefGoogle Scholar
  2. 2.
    K. O. Boltar, P. V. Vlasov, A. A. Lopukhin, et al., Usp. Prikl. Fiz. 1, 733 (2013).Google Scholar
  3. 3.
    N. I. Iakovleva and K. O. Boltar, Prikl. Fiz., No. 2, 45 (1999).Google Scholar
  4. 4.
    I. D. Burlakov, K. O. Boltar, P. V. Vlasov, et al., Prikl. Fiz., No. 3, 58 (2016).Google Scholar
  5. 5.
    I. D. Burlakov, V. P. Ponomarenko, A. M. Filachev, and E. V. Degtyarev, Prikl. Fiz., No. 2, 43 (2007).Google Scholar
  6. 6.
    G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Handbook of Crystal Growth (Springer-Verlag, Berlin, 2010).CrossRefGoogle Scholar
  7. 7.
    V. K. Dixit, B. V. Rodrigues, H. L. Bhat, et al., J. Appl. Phys. 90, 1750 (2001).CrossRefGoogle Scholar
  8. 8.
    D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (Taylor & Francis, London, 1998; Nauka, Moscow, 2002).Google Scholar
  9. 9.
    J. A. Godines, R. Castillo, J. Martinez, et al., J. Crystal Growth. 178, 422 (1997).CrossRefGoogle Scholar
  10. 10.
    L. V. Kiseleva, A. A. Lopukhin, Yu. S. Mezin, et al., Prikl. Fiz., No. 5, 84 (2015).Google Scholar
  11. 11.
    P. Capper, Bulk Growth of Electronic, Optical and Optoelectronic Materials (Wiley, Chichester, 2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. D. Shabrin
    • 1
  • A. E. Goncharov
    • 1
  • D. A. Pashkeev
    • 1
  • A. V. Lyalikov
    • 1
  • A. V. Egorov
    • 1
  1. 1.Orion Research and Production AssociationMoscowRussia

Personalised recommendations