Low-complexity SIC-MMSE for joint multiple-input multiple-output detection

  • F. C. Kamaha Ngayahala
  • S. Ahmed
  • D. M. Saqib BhattiEmail author
  • N. Saeed
  • N. A. Kaimkhani
  • M. Rasheed
Theory and Methods of Signal Processing


Iterative detection and decoding based on a soft interference cancellation–minimum mean squared error (SIC-MMSE) scheme provides efficient performance for coded MIMO systems. The critical computational burden for a SIC-MMSE detector in a MIMO system lies in the multiple inverse operations of the complex matrix. In this paper, we present a new method to reduce the complexity of the SIC-MMSE scheme based on a MIMO detection scheme that uses a single universal matrix with a non-layer-dependent inversion process. We apply the Taylor series expansion approach and derive a simple non-layer-dependent inverse matrix. The simulation results reveal that the utilization of the universal matrices presented in this paper produces almost the same performance as the conventional SIC-MMSE scheme but with low computational complexity.


multiple-input multiple-output (MIMO) minimum mean squared-error (MMSE) iterative detection and decoding soft detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ahmed and S. Kim, “An efficient iterative detection scheme for coded MIMO systems,” in Proc. IEEE Int. Conf. on Information Networking (ICOIN), Bangkok, Thailand, Jan. 27–30, 2013 (IEEE, New York, 2013), pp. 440–443.CrossRefGoogle Scholar
  2. 2.
    V. V. Chapursky, “Distribution function of the ground clutter and generalization of the Westerfield formula for calculation of the clutter power in spatially multichannel MIMO radar systems,” J. Commun. Technol. Electron. 62, 212–218 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Ahmed and S. Kim, “Efficient list-sphere detection scheme for joint iterative multiple-input multiple-output detection,” IET Communications 8, 3341–3348 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Wang and H. V. Poor, “Iterative (turbo) soft-interference cancellation and decoding for coded CDMA,” IEEE Trans. Communication 47, 1046–1061 (1999).CrossRefGoogle Scholar
  5. 5.
    M. Tuchler, C. Andrew, et al. “Minimum mean squared error equalization using a priori information,” IEEE Trans Signal Process. 50, 673–683 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Witzke, S. Baro, F. Schreckenbach, and J. Hagenauer, “Iterative detection of MIMO signals with linear detectors,” Proc. Asilomar Conf. on Signals, Systems and Computers, Pacic Grove, CA, Nov. 2002 (IEEE, New York, 2002), 289–293.Google Scholar
  7. 7.
    J. W. Choi, C. Andrew, et al., “Improved linear softinput soft-output detection via soft feedback successive interference cancellation,” IEEE Trans. Commun. 58, 986–996 (2010).CrossRefGoogle Scholar
  8. 8.
    X. Dai, “Enhancing the performance of the SIC-MMSE iterative receiver for coded MIMO systems via companding,” IEEE Commun. Lett. 16, 921–924 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Rafati, H. Lou, and C. Xiao, “Low-complexity softdecision feedback turbo equalization for MIMO systems with multilevel modulations,” IEEE Trans. Vehicular Technol. 60, 3218–3227 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Yang and H. Zhang, “A simplified MMSE-based iterative receiver for MIMO systems,” J. Zhejiang Univ. Sci. 10, 1389–1394 (2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    J. Choi, “MIMO-BICM iterative receiver with EM based channel estimation and simplified MMSE combining with soft cancellation,” IEEE Trans. Signal Process. 54, 3247–3251 (2006).CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Nam, S. R. Kim, and H. K. Chung, “Cholesky based efficient algorithms for the MMSE-SIC receiver,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Washington DC, 2007 (IEEE, New York, 2007), pp. 3045–3050.Google Scholar
  13. 13.
    C. Studer, S. Fateh, and D. Dominik Seethaler, “ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation,” IEEE J. of Solid-State Circuits 46, 1754–1765 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Brandt Petersen and M. Syskind Pedersen, The Matrix Cook Book (Tech. Univ. Denmark, 2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • F. C. Kamaha Ngayahala
    • 1
  • S. Ahmed
    • 2
  • D. M. Saqib Bhatti
    • 2
    Email author
  • N. Saeed
    • 3
  • N. A. Kaimkhani
    • 4
  • M. Rasheed
    • 2
  1. 1.Electronics and Information Engineering Chonbuk University, Republic of KoreaJeonjuKorea
  2. 2.Computer and Telecommunication Engineering Dawood University of Engineering and Technology, Islamic Republic of PakistanKarachiPakistan
  3. 3.Department of Computer Science Iqra National University, Islamic Republic of PakistanPeshavarPakistan
  4. 4.Electrical Engineering Bahria University of Engineering and Technology, Islamic Republic of PakistanKarachiPakistan

Personalised recommendations