Advertisement

High-symmetry DC SQUID based on the Nb/AlO x /Nb Josephson junctions for nondestructive evaluation

  • E. A. KostyurinaEmail author
  • K. V. Kalashnikov
  • L. V. Filippenko
  • O. S. Kiselev
  • V. P. Koshelets
Novel Radio Systems and Elements
  • 45 Downloads

Abstract

Topology of high-symmetry thin-film SQUIDs based on the Nb/AlO x /Nb tunneling junctions is developed and optimized. The devices exhibit relatively low sensitivity to static external field and electric interference. An experimentally implemented SQUID sensor with an integrated input coil with a sensitivity of 0.26 μA/Ф0 exhibits an intrinsic noise with respect to magnetic flux of less than \(5\mu {\Phi _0}/\sqrt {Hz} \). A system for encapsulation of sensors is developed for applications in multichannel systems for nondestructive evaluation of materials and alternative diagnostic systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., J. Phys. D: Appl. Phys. 30, 293 (1997).CrossRefGoogle Scholar
  2. 2.
    H. Weinstock, IEEE Trans. Magn. 27, 3231 (1991).CrossRefGoogle Scholar
  3. 3.
    J. Clarke and A. I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley, Hoboken, 2006).CrossRefGoogle Scholar
  4. 4.
    M. B. Ketchen and T. J. Watson, IEEE Trans. Magn. 27, 2916 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Ketchen, D. J. Pearson, K. Stawiasz, et al., IEEE Trans. Appl. Supercond. 3, 1795 (1993).CrossRefGoogle Scholar
  6. 6.
    V. P. Koshelets, A. N. Matlashov, I. L. Serpuchenko, et al., IEEE Trans. Magn. 25, 1182 (1989).CrossRefGoogle Scholar
  7. 7.
    M. B. Simmonds, US Patent No. 5053834 (1991).Google Scholar
  8. 8.
    E. A. Kostyurina, K. V. Kalashnikov, L. V. Filippenko, and V. P. Koshelets, Phys. Solid State 58, 2203 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Knuutila, M. Kajola, H. Seppa, et al., J. Low Temp. Phys. 71, 369 (1988).CrossRefGoogle Scholar
  10. 10.
    L. V. Filippenko, S. V. Shitov, P. N. Dmitriev, et al., IEEE Trans. Appl. Supercond. 11, 816 (2001).CrossRefGoogle Scholar
  11. 11.
    K. Enpuku, R. Cantor, and H. Koch, J. Appl. Phys. 72, 1000 (1992).CrossRefGoogle Scholar
  12. 12.
    E. V. Burmistrov, V. Yu. Slobodchikov, V. V. Khanin, Yu. V. Maslennikov, and O. V. Snigirev, J. Commun. Technol. Electron. 53, 1259 (2008).CrossRefGoogle Scholar
  13. 13.
    V. Schultze, R. Stolz, R. Ijsselsteijn, et al., IEEE Trans. Appl. Supercond. 7, 3473 (1997).CrossRefGoogle Scholar
  14. 14.
    Y. V. Maslennikov, M. A. Primin, V. Y. Slobodchikov, et al., Phys. Procedia. 36, 88 (2012).CrossRefGoogle Scholar
  15. 15.
    W. Jaszczukt, H. J. M. ter Brake, J. Flokstra, et al., Meas. Sci. Technol. 2, 1121 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • E. A. Kostyurina
    • 1
    • 2
    Email author
  • K. V. Kalashnikov
    • 1
    • 2
  • L. V. Filippenko
    • 1
  • O. S. Kiselev
    • 1
  • V. P. Koshelets
    • 1
  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations