Advertisement

Analysis of chaotic synchronization of cascade coupled systems for phase-locked loop using wavelet analysis

  • B. I. ShakhtarinEmail author
  • Yu. A. Sidorkina
  • A. V. Khodunin
Dynamics Chaos in Radiophysics and Electronics

Abstract

A method for detection and study of chaotic synchronization of cascade coupled single ring continuous phase-locked-loop systems is based on the determination of the phase of chaotic signal using continuous wavelet transform and the subsequent monitoring of phases on time (frequency) scales. Morlet, Gauss, Shannon, and B-spline complex wavelets are studied. The results of mathematical simulation are presented. Signal-to-noise ratios that allow chaotic phase synchronization are estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Dmitriev and A. I. Panas, Dynamic Chaos: New Media for Communication Systems (Fizmatlit, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E 50, 1874 (1994).CrossRefGoogle Scholar
  4. 4.
    G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Meccanica 15, 9 (1980).CrossRefGoogle Scholar
  5. 5.
    A. A. Koronovskii and A. E. Hramov, Tech. Phys. Lett. 30, 587 (2004).CrossRefGoogle Scholar
  6. 6.
    Yu. A. Sidorkina, Data Transfer Systems with Chaotic Carrier (Goryachaya liniya–Telekom, Moscow, 2016) [in Russian].Google Scholar
  7. 7.
    Yu. A. Sidorkina and A. V. Khodunin, in Radars and Radio Communication (Proc. 6th All-Rus. Sci.-Tech. Conf., Moscow, Nov. 19−22, 2012) (IRE RAN, Moscow, 2012), Vol. 1, p. 174.Google Scholar
  8. 8.
    I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992; NITS RKHD, Izhevsk−Moscow, 2001).zbMATHGoogle Scholar
  9. 9.
    N. K. Smolentsev, Fundamentals of Wavelet Theory. Wavelets in MATLAB (DMK Press, Moscow, 2008) [in Russian].Google Scholar
  10. 10.
    A. V. Khodunin and L. N. Kazakov, Model. Analiz Inf. Sist. 16 (4), 117 (2009).Google Scholar
  11. 11.
    B. I. Shakhtarin, Yu. A. Sidorkina, and V. Yu. Aliver, Nauch. Vestn. MGTU GA, No. 61, 100 (2003).Google Scholar
  12. 12.
    A. A. Koronovskii, O. I. Moskalenko, D. I. Trubetskov, and A. E. Khramov, Dokl. Phys. 51, 189 (2006).CrossRefGoogle Scholar
  13. 13.
    V. P. Ponomarenko, Sist. Sinkhron. Formir. Obrab. Sign. 6 (1), 15 (2015).Google Scholar
  14. 14.
    V. P. Ponomarenko, Sist. Sinkhron. Formir. Obrab. Sign. 7 (3), 48 (2016).Google Scholar
  15. 15.
    V. P. Ponomarenko, J. Commun. Technol. Electron. 60, 179 (2015).CrossRefGoogle Scholar
  16. 16.
    V. D. Shalfeev and V. V. Matrosov, Nonlinear Dynamics of Phase-Locked Systems (Nizhegor. Gos. Univ., Nizhny Novgorod, 2013) [in Russian].zbMATHGoogle Scholar
  17. 17.
    Dudkowski D., Jafari S., Kapitaniak T. et al., Phys. Reports 637, 1 (2016).MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. V. Matrosov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 49, 357 (2006).Google Scholar
  19. 19.
    V. V. Matrosov and V. D. Shalfeev, Vestn. NNGU, No. 5(3), 216 (2011).Google Scholar
  20. 20.
    L. N. Kazakov, B. I. Shakhtarin, and A. V. Khodunin, J. Commun. Technol. Electron. 60, 611 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • B. I. Shakhtarin
    • 1
    Email author
  • Yu. A. Sidorkina
    • 1
  • A. V. Khodunin
    • 2
  1. 1.Bauman State Technical UniversityMoscowRussia
  2. 2.Demidov State UniversityYaroslavlRussia

Personalised recommendations