Advertisement

Passively Q-switched spaser as a terahertz clock oscillator for plasmon computer

  • I. A. Nechepurenko
  • A. V. DorofeenkoEmail author
  • A. P. Vinogradov
  • S. A. Nikitov
Electrodynamics and Wave Propagation

Abstract

The interaction of plasmons in spaser with saturable absorber leads to pulse generation under passive Q-switching. A distributed scheme of spaser that represents a groove on metal surface filled with active medium is considered. The Maxwell–Bloch equations are used to describe generation of 1D plasmons in such a distributed spaser. The operation of the system as a terahertz clock oscillator is demonstrated with the aid of numerical experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Maier, Plasmonics: Fundamentals and Applications. (Springer Sci. & Business Media, New York, 2007).Google Scholar
  2. 2.
    Plasmonics and Plasmonic Metamaterials: Analysis and Applications, Ed. by G. Shvets, I. Tsukerman (World Scientific, Singapore, 2012).Google Scholar
  3. 3.
    Plasmonics: From Basics to Advanced Topics, Ed. by S. Enoch and N. Bonod (Springer, Berlin, 2012).Google Scholar
  4. 4.
    Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, Ed. by S. Zouhdi, A. H. Sihvola, A. P. Vinogradov (Springer Sci. & Business Media, New York, 2009).Google Scholar
  5. 5.
    Plasmonic Nanoguides and Circuits, Ed. by S. I. Bozhevolnyi (Pan Stanford Publ., Singapore, 2009).Google Scholar
  6. 6.
    Nanophotonics with Surface Plasmons, Ed. by V. M. Shalaev, S. Kawata (Elsevier, Amsterdam, 2007).Google Scholar
  7. 7.
    Active Plasmonics and Tuneable Plasmonic Metamaterials, Ed. by A. V. Zayats and S. Maier (John Wiley and Sons, Hoboken, 2013).Google Scholar
  8. 8.
    P. R. West, S. Ishii, G. V. Naik, et al., Las. Phot. Rev. 4, 795 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. E. Lozovik and A. V. Klyuchnik, Dielectric Susceptibility, Ed. by L.V. Keldysh, D.A. Kirzhnits, and A. A. Maradudin (North Holland Publishing, Amsterdam, 1987), p. 299.Google Scholar
  10. 10.
    V. V. Klimov, Nanoplasmonics (Pan Stanford Publ., Singapore, 2013).Google Scholar
  11. 11.
    N. Chevalier, M. J. Nasse, J. C. Woehl, et al., Nanotechnology 16, 613 (2005).CrossRefGoogle Scholar
  12. 12.
    A. I. Cuche, O. Mollet, A. I. Drezet, and S. Huant, Nano Lett. 10, 4566 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Cuche, B. Masenelli, G. Ledoux, et al., Nanotechnology 20 (5), 015603 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Hawrylak and J. J. Quinn, Appl. Phys. Lett. 49, 280 (1986).CrossRefGoogle Scholar
  15. 15.
    K. Kempa, P. Bakshi, and J. Cen, Proc. SPIE 0945 (6), 62 (1988).CrossRefGoogle Scholar
  16. 16.
    S. Anantha Ramakrishna and J. B. Pendry, Phys. Rev. B 67, 201101 (2003).CrossRefGoogle Scholar
  17. 17.
    D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).CrossRefGoogle Scholar
  18. 18.
    I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, et al. Phys. Rev. A 71, 063812 (2005).CrossRefGoogle Scholar
  19. 19.
    M. A. Noginov, G. Zhu, A. M. Belgrave, et al., Nature 460 (7259), 1110 (2009).CrossRefGoogle Scholar
  20. 20.
    Y.-J. Lu, J. Kim, H.-Y. Chen, et al., Science 337 (6093), (2012).Google Scholar
  21. 21.
    R. F. Oulton, V. J. Sorger, T. Zentgraf, et al., Nature 461 (7264), 629 (2009).CrossRefGoogle Scholar
  22. 22.
    M. T. Hill, M. Marell, E. S. P. Leong, et al., Opt. Express 17, 11107 (2009).CrossRefGoogle Scholar
  23. 23.
    J. Y. Suh, C. H. Kim, W. Zhou, et al., Nano Letters 12, 5769 (2012).CrossRefGoogle Scholar
  24. 24.
    F. Van Beijnum, P. J. Van Veldhoven, E. J. Geluk, et al., Phys. Rev. Lett. 110 (20), 206802 (2013).CrossRefGoogle Scholar
  25. 25.
    M. S. Tame, K. R. McEnery, S. K. Ozdemir, et al., Nat. Phys. 9, 329 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Jacob and V. M. Shalaev, Science 334 (6055), 463 (2011).CrossRefGoogle Scholar
  27. 27.
    E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, et al., Kvantovaya Elektron. (Moscow) 42, 834 (2012).CrossRefGoogle Scholar
  28. 28.
    E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, et al., Opt. Lett. 36 (21), 4302 (2011).CrossRefGoogle Scholar
  29. 29.
    E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, et al., Phys. Rev. B. 85, 165419 (2012).CrossRefGoogle Scholar
  30. 30.
    A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, et al., Usp. Fiz. Nauk 182, 1122 (2012).CrossRefGoogle Scholar
  31. 31.
    N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, Nat. Photon, No. 2, 351 (2008).CrossRefGoogle Scholar
  32. 32.
    D. Y. Fedyanin, Opt. Lett. 37, 404 (2012).CrossRefGoogle Scholar
  33. 33.
    A. K. Sarychev and G. Tartakovsky, Phys. Rev. B 75, 085436 (2007).CrossRefGoogle Scholar
  34. 34.
    D. G. Baranov, E. S. Andrianov, A. P. Vinogradov, and A. A. Lisyansky, Opt. Express. 21, 10779 (2013).CrossRefGoogle Scholar
  35. 35.
    A. V. Dorofeenko, A. A. Zyablovsky, A. P. Vinogradov, et al., Opt. Express 21, 14539 (2013).CrossRefGoogle Scholar
  36. 36.
    Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438 (7064), 65 (2005).CrossRefGoogle Scholar
  37. 37.
    Y. A. Vlasov, IEEE Comm. Mag. 50, s67 (2012).CrossRefGoogle Scholar
  38. 38.
    O. Svelto, Principles of Lasers (Springer, 1990; Mir, Moscow, 1990).Google Scholar
  39. 39.
    A. E. Siegman, Lasers (Univ. Sci. Books, California, 1986).Google Scholar
  40. 40.
    K.-H. Kim, A. Husakou, and J. Herrmann, Opt. Express 20, 462 (2012).CrossRefGoogle Scholar
  41. 41.
    J. A. Conway, S. Sahni, and T. Szkopek, Opt. Express 15, 4474 (2007).CrossRefGoogle Scholar
  42. 42.
    A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, et al., Phys. Rev. B 84, 153409 (2011).CrossRefGoogle Scholar
  43. 43.
    L. C. Davis, Phys. Rev. B 14, 5523 (1976).CrossRefGoogle Scholar
  44. 44.
    A. Eguiluz and A. A. Maradudin, Phys. Rev. B 14, 5526 (1976).CrossRefGoogle Scholar
  45. 45.
    A. D. Boardman, G. C. Aers, and R. Teshima, Phys. Rev. B 24 5703 (1981).MathSciNetCrossRefGoogle Scholar
  46. 46.
    I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).CrossRefGoogle Scholar
  47. 47.
    L. D. Landau and E. M. Livshits, Electrodynamics of Continuous Media (Gostekhizdat, Moscow, 2003; Pergamon, Oxford, 1984).Google Scholar
  48. 48.
    M. Sargent and P. Meystre, Elements of Quantum Optics. (Springer-Verlag, Berlin, 2007).zbMATHGoogle Scholar
  49. 49.
    A. N. Oraevskii, Kvantovaya Elektron. (Moscow) 29 (11), 137 (1999).Google Scholar
  50. 50.
    M. O. Scully and M. S. Zubairy. Quantum Optics (Cambridge Univ. Press, Cambridge, 2001; Fizmatlit, Moscow, 2003).zbMATHGoogle Scholar
  51. 51.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  52. 52.
    Ya. I. Khanin, Fundamentals of the Dynamics of Lasers (Nauka, Moscow, 1999).Google Scholar
  53. 53.
    H. Haken, Light, Vol. 2: Laser Light Dynamics (North Holland Physics Publ., Amsterdam, 1985; Mir, Moscow, 1988).Google Scholar
  54. 54.
    A. V. Dorofeenko, A. A. Zyablovskii, A. A. Pukhov, et al., Usp. Fiz. Nauk 182, 1157 (2012).CrossRefGoogle Scholar
  55. 55.
    Yu. S. Barash and V. L. Ginzburg, Usp. Fiz. Nauk 118, 523 (1976).CrossRefGoogle Scholar
  56. 56.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011).Google Scholar
  57. 57.
    J. Q. Lu and A. A. Maradudin, Phys. Rev. B 42 (17), 11159 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. A. Nechepurenko
    • 1
    • 2
  • A. V. Dorofeenko
    • 1
    • 2
    • 3
    Email author
  • A. P. Vinogradov
    • 1
    • 2
    • 3
  • S. A. Nikitov
    • 4
    • 5
  1. 1.Dukhov Research Institute of AutomaticsMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.Institute for Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia
  4. 4.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  5. 5.Chernyshevskii State UniversitySaratovRussia

Personalised recommendations