Calculation of the input impedance of a stripline dipole conformally situated on a dielectric cylinder

  • A. N. Dement’ev
  • D. S. KlyuevEmail author
  • Yu. V. Sokolova
Electrodynamics and Wave Propagation


A method for calculation of the input impedance of a stripline dipole (SD) conformally situated on a dielectric cylinder is developed. A singular integral equation (SIE) for the unknown current density distribution function on the SD surface is obtained. A numerical method for solution of this SIE is described. The dependence of the input impedance on the SD length is obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Chabanov, Aviatsionnye Sist. Nauch. Tekh. Inf., No. 6, 19 (2007).Google Scholar
  2. 2.
    K. A. Malugin, A. A. Neudakin, and A. S. Artyukh, in Innovations in Aviation Complexes and Military Systems: Proc. All-Russia Sci. Pract. Conf., Voronezh, 2009 (VAIU, Voronezh, 2009), Pt. II, p. 122.Google Scholar
  3. 3.
    E. M. Il’in, A. I. Polubekhin, and A. G. Cherevko, Vestn. SibGUTI, No. 2, 149 (2015).Google Scholar
  4. 4.
    N. N. Kisel’, S. G. Grishchenko, and D. S. Derachits, Izv. Yuzh. Federal Univ., Tekh. Nauki, No. 3, 240 (2015).Google Scholar
  5. 5.
    A. N. Dement’ev, D. S. Klyuev, V. A. Neganov, and Yu. V. Sokolova, Singular and Hypersingular Integral Equations in the Theory of Reflector and Stripline Antennas (Radiotekhnika, Moscow, 2015) [in Russian].Google Scholar
  6. 6.
    O. S. Labun’ko, The electrodynamic analysis of a system of longitudinal electric oscillators in a magnetodielectric layer on a metal circular cylinder, Cand. Sci. (Phys.–Math.) Dissertation (Rostov. Gos. Univ., Rostov-on-Don, 2004).Google Scholar
  7. 7.
    V. A. Neganov, E. I. Nefedov, and G. P. Yarovoi, Stripline-Slot Structures for Microwave and Extremely High Frequencies (Fizmatlit, Moscow, 1996) [in Russian].Google Scholar
  8. 8.
    A. N. Dementyev, D. S. Klyuev, and S. A. Shatrov, Dokl. Phys. 61, 11 (2016).CrossRefGoogle Scholar
  9. 9.
    N. I. Muskhelishvili, Singular Integral Equations (3rd Ed., Nauka, Moscow, 1968; Wolters-Noordhoff, Groningen, 1972).zbMATHGoogle Scholar
  10. 10.
    F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977; Addison-Wesley, Reading, Mass., 1966).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. N. Dement’ev
    • 1
  • D. S. Klyuev
    • 2
    Email author
  • Yu. V. Sokolova
    • 2
  1. 1.Moscow Technological University MIREAMoscowRussia
  2. 2.Volga State University of Telecommunications and InformaticsSamaraRussia

Personalised recommendations