Growth of Thin Graphite Films on a Dielectric Substrate using Heteroepitaxial Synthesis

Abstract

A technique for growing thin graphite films on a dielectric substrate by annealing the Al2O3(0001)/Ni(111)/ta-C structure has been optimized. This technique is based on catalytic decomposition of hydrocarbons on the surface of a single-crystal catalyst metal film on a dielectric substrate and subsequent diffusion and crystallization of carbon between the metal film and the substrate. A thin graphite film with a low density of crystal-structure defects is obtained on the dielectric substrate after chemical etching of the metal film.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. A. Bol, Ch. Dimitrakopoulos, W. Zhu, F. Xia, Ph. Avouris, and Y.-M. Lin, Nano Lett. 12, 3062 (2012). https://doi.org/10.1021/nl300904k

    ADS  Article  Google Scholar 

  2. 2

    F. Bonaccorso, A. Lombardo, T. Hasan, Zh. Suna, L. Colombob, and A. C. Ferraria, Mater. Today 15, 564 (2012). https://doi.org/10.1016/S1369-7021(13)70014-2

    Article  Google Scholar 

  3. 3

    E. P. Randviir, D. A. C. Brownson, and C. E. Banks, Mater. Today 17, 426 (2014). https://doi.org/10.1016/j.mattod.2014.06.001

    Article  Google Scholar 

  4. 4

    Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, ACS Nano 5, 8241 (2011). https://doi.org/10.1021/nn202923y

    Article  Google Scholar 

  5. 5

    M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.-L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, Appl. Phys. Lett. 96, 063110 (2010). https://doi.org/10.1063/1.3318263

    ADS  Article  Google Scholar 

  6. 6

    M. Xu, D. Fujita, K. Sagisaka, E. Watanabe, and N. Hanagata, ACS Nano 5, 1522 (2011). https://doi.org/10.1021/nn103428k

    Article  Google Scholar 

  7. 7

    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature (London, U.K.) 471 (7336), 124 (2011). https://doi.org/10.1038/nature09804

    ADS  Article  Google Scholar 

  8. 8

    E. G. Shustin, N. V. Isaev, V. A. Luzanov, and M. P. Temiryazeva, Tech. Phys. 62, 1069 (2017). https://doi.org/10.1134/S1063784217070210

    Article  Google Scholar 

  9. 9

    V. A. Luzanov, I. M. Kotelyanskii, and E. G. Shustin, J. Commun. Technol. Electron. 62, 820 (2017). https://doi.org/10.1134/S1064226917060134

    Article  Google Scholar 

  10. 10

    M. Rahman, Z. Boggs, D. Neff, and M. Norton, Langmuir 34, 15014 (2018). https://doi.org/10.1021/acs.langmuir.8b01851

    Article  Google Scholar 

  11. 11

    S. Nakanishi and T. Horiguchi, Jpn. J. Appl. Phys. 20, L214 (1981). https://doi.org/10.1143/jjap.20.l214

    ADS  Article  Google Scholar 

  12. 12

    A. Ismach, H. Chou, D. A. Ferrer, Y. Wu, S. McDonnell, H. C. Floresca, A. Covacevich, C. Pope, R. Piner, M. J. Kim, R. M. Wallace, L. Colombo, and R. S. Ruoff, ACS Nano 6, 6378 (2012). https://doi.org/10.1021/nn301940k

    Article  Google Scholar 

  13. 13

    L. Baraton, Z. B. He, C. S. Lee, C. S. Cojocaru, M. Châtelet, J.-L. Maurice, Y. H. Lee, and D. Pribat, Europhys. Lett. 96, 46003 (2011). https://doi.org/10.1209/0295-5075/96/46003

    ADS  Article  Google Scholar 

  14. 14

    L. A. Fomin, I. V. Malikov, V. Yu. Vinnichenko, K. M. Kalach, S. V. Pyatkin, and G. M. Mikhailov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 104 (2008). https://doi.org/10.1007/s11700-008-1015-z

    Article  Google Scholar 

  15. 15

    I. A. Sorokin, D. V. Kolodko, and E. G. Shustin, Tech. Phys. 63, 1157 (2018). https://doi.org/10.1134/S1063784218080194

    Article  Google Scholar 

  16. 16

    P. K. Chu and L. Li, Mater. Chem. Phys. 96, 253 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.048

    Article  Google Scholar 

  17. 17

    J. Lahiri, T. S. Miller, A. J. Ross, L. Adamska, I. I. Oleynik, and M. Batzill, New J. Phys. 13, 025001 (2011). https://doi.org/10.1088/1367-2630/13/2/025001

    ADS  Article  Google Scholar 

Download references

Funding

This study was performed within the framework of a state contract and supported in part by the Russian Foundation for Basic Research, projects nos. 18-38-00884 and 19-07-00432.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Sorokin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sorokin, I.A., Kolodko, D.V., Luzanov, V.A. et al. Growth of Thin Graphite Films on a Dielectric Substrate using Heteroepitaxial Synthesis. Tech. Phys. Lett. 46, 497–500 (2020). https://doi.org/10.1134/S1063785020050260

Download citation

Keywords:

  • graphene
  • heteroepitaxy
  • catalyst metal
  • synthesis
  • nickel
  • dielectric substrate.